Rajiv Gandhi Cancer Institute, New Delhi, India.
Manipal Hospital and Comprehensive Cancer Centre, Bengaluru, Karnataka, India.
Breast. 2021 Oct;59:1-7. doi: 10.1016/j.breast.2021.05.007. Epub 2021 May 28.
Accurate recurrence risk assessment in hormone receptor positive, HER2/neu negative breast cancer is critical to plan precise therapy. CanAssist Breast (CAB) assesses recurrence risk based on tumor biology using artificial intelligence-based approach. We report CAB risk assessment correlating with disease outcomes in multiple clinically high- and low-risk subgroups. In this retrospective cohort of 925 patients [median age-54 (22-86)] CAB had hazard ratio (HR) of 3 (1.83-5.21) and 2.5 (1.45-4.29), P = 0.0009) in univariate and multivariate analysis. CAB's HR in sub-groups with the other determinants of outcome, T2 (HR: 2.79 (1.49-5.25), P = 0.0001); age [< 50 (HR: 3.14 (1.39-7), P = 0.0008)]. Besides application in node-negative patients, CAB's HR was 2.45 (1.34-4.47), P = 0.0023) in node-positive patients. In clinically low-risk patients (N0 tumors up to 5 cms) (HR: 2.48 (0.79-7.8), P = 0.03) and with luminal-A characteristics (HR: 4.54 (1-19.75), P = 0.004), CAB identified >16% as high-risk with recurrence rates of up to 12%. In clinically high-risk patients (T2N1 tumors (HR: 2.65 (1.31-5.36), P = 0.003; low-risk DMFS: 92.66 ± 1.88) and in women with luminal-B characteristics (HR: 3.24; (1.69-6.22), P < 0.0001; low-risk DMFS: 93.34 ± 1.34)), CAB identified >64% as low-risk. Thus, CAB prognostication was significant in women with clinically low- and high-risk disease. The data imply the use of CAB for providing helpful information to stratify tumors based on biology incorporated with clinical features for Indian patients, which can be extrapolated to regions with similarly characterized patients, South-East Asia.
在激素受体阳性、HER2/neu 阴性的乳腺癌中,准确的复发风险评估对于制定精确的治疗方案至关重要。CanAssist Breast(CAB)使用基于人工智能的方法评估肿瘤生物学基础上的复发风险。我们报告了 CAB 风险评估与多种临床高风险和低风险亚组疾病结局的相关性。在这项 925 例患者的回顾性队列研究中(中位年龄 54 岁(22-86 岁)),CAB 在单因素和多因素分析中的危险比(HR)分别为 3(1.83-5.21)和 2.5(1.45-4.29),P=0.0009)。在具有其他结局决定因素的亚组中,CAB 的 HR 为 T2(HR:2.79(1.49-5.25),P=0.0001);年龄[<50 岁(HR:3.14(1.39-7),P=0.0008)]。除了在淋巴结阴性患者中的应用外,CAB 在淋巴结阳性患者中的 HR 为 2.45(1.34-4.47),P=0.0023)。在临床低风险患者(N0 肿瘤最大 5cm)(HR:2.48(0.79-7.8),P=0.03)和具有 luminal-A 特征的患者中(HR:4.54(1-19.75),P=0.004),CAB 识别出超过 16%的患者为高风险,复发率高达 12%。在临床高风险患者(T2N1 肿瘤(HR:2.65(1.31-5.36),P=0.003;低危 DMFS:92.66±1.88)和具有 luminal-B 特征的女性患者(HR:3.24;(1.69-6.22),P<0.0001;低危 DMFS:93.34±1.34)),CAB 识别出超过 64%的患者为低危。因此,CAB 预后在具有临床低危和高危疾病的女性中具有显著意义。这些数据表明,在印度患者中,CAB 可用于根据生物学特征和临床特征对肿瘤进行分层,提供有帮助的信息,这可以推广到具有类似特征的患者中,如东南亚地区。