Umar Zeeshan, Chen Qiwei, Tang Biao, Xu Yongchang, Wang Jinzi, Zhang Huimin, Ji Kai, Jia Xu, Feng Youjun
Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
Environ Microbiol. 2021 Dec;23(12):7465-7482. doi: 10.1111/1462-2920.15632. Epub 2021 Jun 16.
The transferability of bacterial resistance to tigecycline, the 'last-resort' antibiotic, is an emerging challenge of global health concern. The plasmid-borne tet(X) that encodes a flavin-dependent monooxygenase represents a new mechanism for tigecycline resistance. Natural source for an ongoing family of Tet(X) resistance determinants is poorly understood. Here, we report the discovery of 26 new variants [tet(X18) to tet(X44)] from the poultry pathogen Riemerella anatipestifer, which expands extensively the current Tet(X) family. R. anatipestifer appears as a natural reservoir for tet(X), of which the chromosome harbours varied copies of tet(X) progenitors. Despite that an inactive ancestor rarely occurs, the action and mechanism of Tet(X2/4)-P, a putative Tet(X) progenitor, was comprehensively characterized, giving an intermediate level of tigecycline resistance. The potential pattern of Tet(X) dissemination from ducks to other animals and humans was raised, in the viewpoint of ecological niches. Therefore, this finding defines a large pool of natural sources for Tet(X) tigecycline resistance, heightening the need of efficient approaches to manage the inter-species transmission of tet(X) resistance determinants.
细菌对“最后一道防线”抗生素替加环素的耐药性可转移性,是一个新出现的、引起全球健康关注的挑战。编码黄素依赖性单加氧酶的质粒携带的tet(X)代表了一种新的替加环素耐药机制。目前对Tet(X)耐药决定簇家族持续存在的天然来源了解甚少。在此,我们报告了从家禽病原菌鸭疫里默氏菌中发现26个新变体(tet(X18)至tet(X44)),这极大地扩展了当前的Tet(X)家族。鸭疫里默氏菌似乎是tet(X)的天然储存库,其染色体含有不同拷贝的tet(X)祖基因。尽管很少出现无活性的祖先,但对假定的tet(X)祖基因Tet(X2/4)-P的作用和机制进行了全面表征,其具有中等水平的替加环素耐药性。从生态位的角度来看,提出了tet(X)从鸭传播到其他动物和人类的潜在模式。因此,这一发现确定了tet(X)对替加环素耐药性的大量天然来源,增加了管理tet(X)耐药决定簇种间传播的有效方法的需求。