Suppr超能文献

基于深度学习的非对比 CT 和 CTA 急性缺血核心和缺损的识别。

Deep learning-based identification of acute ischemic core and deficit from non-contrast CT and CTA.

机构信息

Human Phenome Institute, Fudan University, Shanghai, China.

Zhangjiang Fudan International Innovation Center, Shanghai, China.

出版信息

J Cereb Blood Flow Metab. 2021 Nov;41(11):3028-3038. doi: 10.1177/0271678X211023660. Epub 2021 Jun 8.

Abstract

The accurate identification of irreversible infarction and salvageable tissue is important in planning the treatments for acute ischemic stroke (AIS) patients. Computed tomographic perfusion (CTP) can be used to evaluate the ischemic core and deficit, covering most of the territories of anterior circulation, but many community hospitals and primary stroke centers do not have the capability to perform CTP scan in emergency situation. This study aimed to identify AIS lesions from widely available non-contrast computed tomography (NCCT) and CT angiography (CTA) using deep learning. A total of 345AIS patients from our emergency department were included. A multi-scale 3D convolutional neural network (CNN) was used as the predictive model with inputs of NCCT, CTA, and CTA+ (8 s delay after CTA) images. An external cohort with 108 patients was included to further validate the generalization performance of the proposed model. Strong correlations with CTP-RAPID segmentations ( = 0.84 for core,  = 0.83 for deficit) were observed when NCCT, CTA, and CTA+ images were all used in the model. The diagnostic decisions according to DEFUSE3 showed high accuracy when using NCCT, CTA, and CTA+ (0.90±0.04), followed by the combination of NCCT and CTA (0.87±0.04), CTA-alone (0.76±0.06), and NCCT-alone (0.53±0.09).

摘要

准确识别不可逆性梗死和可挽救组织对于急性缺血性脑卒中(AIS)患者的治疗计划非常重要。计算机断层灌注(CTP)可用于评估缺血核心和缺损,涵盖前循环的大部分区域,但许多社区医院和初级卒中中心在紧急情况下无法进行 CTP 扫描。本研究旨在使用深度学习从广泛可用的非对比 CT(NCCT)和 CT 血管造影(CTA)中识别 AIS 病变。共纳入我院急诊科的 345 例 AIS 患者。采用多尺度 3D 卷积神经网络(CNN)作为预测模型,输入 NCCT、CTA 和 CTA+(CTA 后 8s 延迟)图像。纳入了一个包含 108 例患者的外部队列,以进一步验证所提出模型的泛化性能。当模型中同时使用 NCCT、CTA 和 CTA+图像时,与 CTP-RAPID 分割具有很强的相关性(核心为 0.84,缺损为 0.83)。当使用 NCCT、CTA 和 CTA+时,根据 DEFUSE3 做出的诊断决策具有很高的准确性(0.90±0.04),其次是 NCCT 和 CTA 的组合(0.87±0.04)、CTA 单独使用(0.76±0.06)和 NCCT 单独使用(0.53±0.09)。

相似文献

1
Deep learning-based identification of acute ischemic core and deficit from non-contrast CT and CTA.
J Cereb Blood Flow Metab. 2021 Nov;41(11):3028-3038. doi: 10.1177/0271678X211023660. Epub 2021 Jun 8.
2
The Prognostic Value of CT Angiography and CT Perfusion in Acute Ischemic Stroke.
Cerebrovasc Dis. 2015;40(5-6):258-69. doi: 10.1159/000441088. Epub 2015 Oct 21.
4
Quantification of infarct core signal using CT imaging in acute ischemic stroke.
Neuroimage Clin. 2022;34:102998. doi: 10.1016/j.nicl.2022.102998. Epub 2022 Mar 30.
6
Brain CT perfusion improves intracranial vessel occlusion detection on CT angiography.
J Neuroradiol. 2019 Mar;46(2):124-129. doi: 10.1016/j.neurad.2018.03.003. Epub 2018 Apr 3.
7
Computed Tomography Perfusion Improves Diagnostic Accuracy in Acute Posterior Circulation Stroke.
Cerebrovasc Dis. 2016;41(5-6):242-7. doi: 10.1159/000443618. Epub 2016 Jan 29.
10
Comparison of multimodal CT scan protocols used for decision-making on mechanical thrombectomy in acute ischemic stroke.
Neuroradiology. 2020 Mar;62(3):399-406. doi: 10.1007/s00234-019-02351-5. Epub 2020 Jan 4.

引用本文的文献

2
Cerebral ischemia detection using deep learning techniques.
Health Inf Sci Syst. 2025 May 20;13(1):36. doi: 10.1007/s13755-025-00352-8. eCollection 2025 Dec.
3
Generalizable self-supervised learning for brain CTA in acute stroke.
Comput Biol Med. 2025 Jan;184:109337. doi: 10.1016/j.compbiomed.2024.109337. Epub 2024 Nov 12.
5
Factors influencing the reliability of a CT angiography-based deep learning method for infarct volume estimation.
BJR Open. 2024 Jan 5;6(1):tzae001. doi: 10.1093/bjro/tzae001. eCollection 2024 Jan.
6
Using Neural Networks Algorithm in Ischemic Stroke Diagnosis: A Systematic Review.
J Multidiscip Healthc. 2023 Sep 1;16:2593-2602. doi: 10.2147/JMDH.S421280. eCollection 2023.

本文引用的文献

1
Neural Network-derived Perfusion Maps for the Assessment of Lesions in Patients with Acute Ischemic Stroke.
Radiol Artif Intell. 2019 Sep 11;1(5):e190019. doi: 10.1148/ryai.2019190019. eCollection 2019 Sep.
2
Baseline Cerebral Ischemic Core Quantified by Different Automatic Software and Its Predictive Value for Clinical Outcome.
Front Neurosci. 2021 Apr 12;15:608799. doi: 10.3389/fnins.2021.608799. eCollection 2021.
4
Early neutrophil count relates to infarct size and fatal outcome after large hemispheric infarction.
CNS Neurosci Ther. 2020 Aug;26(8):829-836. doi: 10.1111/cns.13381. Epub 2020 May 6.
5
Machine Learning for Detecting Early Infarction in Acute Stroke with Non-Contrast-enhanced CT.
Radiology. 2020 Mar;294(3):638-644. doi: 10.1148/radiol.2020191193. Epub 2020 Jan 28.
8
Delayed recanalization in acute ischemic stroke patients: Late is better than never?
J Cereb Blood Flow Metab. 2019 Dec;39(12):2536-2538. doi: 10.1177/0271678X19881449. Epub 2019 Oct 8.
9
e-ASPECTS derived acute ischemic volumes on non-contrast-enhanced computed tomography images.
Int J Stroke. 2020 Dec;15(9):995-1001. doi: 10.1177/1747493019879661. Epub 2019 Sep 30.
10
Implementation of multimodal computed tomography in a telestroke network: Five-year experience.
CNS Neurosci Ther. 2020 Mar;26(3):367-373. doi: 10.1111/cns.13224. Epub 2019 Sep 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验