文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

N6-甲基腺苷(m6A)在免疫细胞中的潜在作用。

Potential roles of N6-methyladenosine (m6A) in immune cells.

机构信息

Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, No. 155 NanJing North Road, Shenyang, China.

College of Life Science, Liaoning University, 66 Chongshan Road, Shenyang, 110036, People's Republic of China.

出版信息

J Transl Med. 2021 Jun 8;19(1):251. doi: 10.1186/s12967-021-02918-y.


DOI:10.1186/s12967-021-02918-y
PMID:34103054
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8186046/
Abstract

N6-methyl-adenosine (m6A) is one of the most common internal modifications on RNA molecules present in mammalian cells. Deregulation of m6A modification has been recently implicated in many types of human diseases. Therefore, m6A modification has become a research hotspot for its potential therapeutic applications in the treatment of various diseases. The immune system mostly involves different types of immune cells to provide the first line of defense against infections. The immunoregulatory network that orchestrate the immune responses to new pathogens plays a pivotal role in the development of the disease. And m6A modification has been demonstrated to be a major post-transcriptional regulator of immune responses in cells. In this review, we summarize the participants involved in m6A regulation and try to reveal how m6A modification affects the immune responses via changing the immunoregulatory networks.

摘要

N6-甲基腺苷(m6A)是哺乳动物细胞中 RNA 分子上最常见的内部修饰之一。m6A 修饰的失调最近被牵连到许多类型的人类疾病中。因此,m6A 修饰因其在治疗各种疾病中的潜在治疗应用而成为研究热点。免疫系统主要涉及不同类型的免疫细胞,为抵御感染提供第一道防线。协调对新病原体的免疫反应的免疫调节网络在疾病的发展中起着关键作用。并且 m6A 修饰已被证明是细胞中免疫反应的主要转录后调节剂。在这篇综述中,我们总结了参与 m6A 调节的参与者,并试图揭示 m6A 修饰如何通过改变免疫调节网络来影响免疫反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb4a/8186046/2b3b644d880f/12967_2021_2918_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb4a/8186046/9a997fbc139f/12967_2021_2918_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb4a/8186046/e8c5f2653feb/12967_2021_2918_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb4a/8186046/070a8b6576ff/12967_2021_2918_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb4a/8186046/2b3b644d880f/12967_2021_2918_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb4a/8186046/9a997fbc139f/12967_2021_2918_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb4a/8186046/e8c5f2653feb/12967_2021_2918_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb4a/8186046/070a8b6576ff/12967_2021_2918_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb4a/8186046/2b3b644d880f/12967_2021_2918_Fig4_HTML.jpg

相似文献

[1]
Potential roles of N6-methyladenosine (m6A) in immune cells.

J Transl Med. 2021-6-8

[2]
The emerging roles of N6-methyladenosine (m6A) deregulation in liver carcinogenesis.

Mol Cancer. 2020-2-28

[3]
N6-Methyladenosine-Sculpted Regulatory Landscape of Noncoding RNA.

Front Oncol. 2021-10-15

[4]
Impact of N6-methyladenosine (mA) modification on immunity.

Cell Commun Signal. 2022-9-9

[5]
Manipulating the tumour immune microenvironment by N6-methyladenosine RNA modification.

Cancer Gene Ther. 2024-9

[6]
Association of N6-methyladenosine with viruses and related diseases.

Virol J. 2019-11-11

[7]
Emerging role of RNA modification N6-methyladenosine in immune evasion.

Cell Death Dis. 2021-3-19

[8]
Recent advances in crosstalk between N6-methyladenosine (m6A) modification and circular RNAs in cancer.

Mol Ther Nucleic Acids. 2022-1-21

[9]
The Role of m6A Methylation in Tumor Immunity and Immune-Associated Disorder.

Biomolecules. 2024-8-22

[10]
The interplay between m6A RNA methylation and noncoding RNA in cancer.

J Hematol Oncol. 2019-11-22

引用本文的文献

[1]
New Targets for Immune Inflammatory Response in Rheumatoid Arthritis: Focus on the Potential Significance of N6-Methyladenosine, Ferroptosis and Cuproptosis.

J Inflamm Res. 2025-6-19

[2]
Gut Microbiota-Derived Hyocholic Acid Enhances Type 3 Immunity and Protects Against Salmonella enterica Serovar Typhimurium in Neonatal Rats.

Adv Sci (Weinh). 2025-3

[3]
Circular RNAs: novel noncoding players in male infertility.

Hereditas. 2024-11-18

[4]
The Role of m6A Methylation in Tumor Immunity and Immune-Associated Disorder.

Biomolecules. 2024-8-22

[5]
The YTH domain-containing protein family: Emerging players in immunomodulation and tumour immunotherapy targets.

Clin Transl Med. 2024-8

[6]
The Roles of RNA N6-methyladenosine Modifications in Systemic Lupus Erythematosus.

Cell Biochem Biophys. 2024-12

[7]
Exploring the impact of mA modification on immune diseases: mechanisms and therapeutic implication.

Front Immunol. 2024

[8]
m6A mRNA methylation-mediated MAPK signaling modulates the nasal mucosa inflammatory response in allergic rhinitis.

Front Immunol. 2024

[9]
FASTKD1 as a diagnostic and prognostic biomarker for STAD: Insights into m6A modification and immune infiltration.

Exp Ther Med. 2024-5-31

[10]
Manipulating the tumour immune microenvironment by N6-methyladenosine RNA modification.

Cancer Gene Ther. 2024-9

本文引用的文献

[1]
The m6A Methyltransferase METTL3 Is Functionally Implicated in DLBCL Development by Regulating m6A Modification in PEDF.

Front Genet. 2020-8-27

[2]
piRNA-30473 contributes to tumorigenesis and poor prognosis by regulating m6A RNA methylation in DLBCL.

Blood. 2021-3-25

[3]
The biological function of m6A demethylase ALKBH5 and its role in human disease.

Cancer Cell Int. 2020-7-28

[4]
Control of Early B Cell Development by the RNA N-Methyladenosine Methylation.

Cell Rep. 2020-6-30

[5]
N6-methyladenosine demethylase FTO promotes M1 and M2 macrophage activation.

Cell Signal. 2020-5

[6]
YTHDF2 promotes spermagonial adhesion through modulating MMPs decay via mA/mRNA pathway.

Cell Death Dis. 2020-1-20

[7]
Characterization of METTL16 as a cytoplasmic RNA binding protein.

PLoS One. 2020-1-15

[8]
BMP2 Modified by the mA Demethylation Enzyme ALKBH5 in the Ossification of the Ligamentum Flavum Through the AKT Signaling Pathway.

Calcif Tissue Int. 2020-5

[9]
The m6A methyltransferase METTL3 cooperates with demethylase ALKBH5 to regulate osteogenic differentiation through NF-κB signaling.

Mol Cell Biochem. 2019-10-23

[10]
Dysregulation of N-methyladenosine regulators predicts poor patient survival in mantle cell lymphoma.

Oncol Lett. 2019-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索