Suppr超能文献

Mfn2 在体内内质网-线粒体连接结构和功能中的作用。

The role of Mfn2 in the structure and function of endoplasmic reticulum-mitochondrial tethering in vivo.

机构信息

Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.

Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430072, China.

出版信息

J Cell Sci. 2021 Jul 1;134(13). doi: 10.1242/jcs.253443. Epub 2021 Jul 9.

Abstract

Mitochondria-endoplasmic reticulum contacts (MERCs) play an essential role in multiple cell physiological processes. Although Mfn2 was the first protein implicated in the formation of MERCs, there is debate as to whether it acts as a tether or antagonizer, largely based on in vitro studies. To understand the role of Mfn2 in MERCs in vivo, we characterized ultrastructural and biochemical changes of MERCs in pyramidal neurons of hippocampus in Mfn2 conditional knockout mice and in Mfn2 overexpressing mice, and found that Mfn2 ablation caused reduced close contacts, whereas Mfn2 overexpression caused increased close contacts between the endoplasmic reticulum (ER) and mitochondria in vivo. Functional studies on SH-SY5Y cells with Mfn2 knockout or overexpression demonstrating similar biochemical changes found that mitochondrial calcium uptake along with IP3R3-Grp75 interaction was decreased in Mfn2 knockout cells but increased in Mfn2 overexpressing cells. Lastly, we found Mfn2 knockout decreased and Mfn2 overexpression increased the interaction between the ER-mitochondria tethering pair of VAPB-PTPIP51. In conclusion, our study supports the notion that Mfn2 plays a critical role in ER-mitochondrial tethering and the formation of close contacts in neuronal cells in vivo.

摘要

线粒体-内质网接触(MERCs)在多种细胞生理过程中发挥着重要作用。尽管 Mfn2 是第一个被牵连到 MERCs 形成的蛋白质,但它是作为一个系链还是拮抗剂存在,很大程度上取决于体外研究。为了了解 Mfn2 在体内 MERCs 中的作用,我们对 Mfn2 条件敲除小鼠和过表达 Mfn2 小鼠海马锥体神经元中的 MERCs 的超微结构和生化变化进行了特征描述,发现 Mfn2 缺失导致紧密接触减少,而 Mfn2 过表达导致内质网(ER)和线粒体之间的紧密接触增加。对 Mfn2 敲除或过表达的 SH-SY5Y 细胞进行的功能研究表明,类似的生化变化发现 Mfn2 敲除细胞中的线粒体钙摄取以及 IP3R3-Grp75 相互作用减少,但 Mfn2 过表达细胞中的增加。最后,我们发现 Mfn2 敲除减少了 ER-线粒体系链对 VAPB-PTPIP51 的相互作用,而 Mfn2 过表达增加了这种相互作用。总之,我们的研究支持了 Mfn2 在体内神经元细胞中 ER-线粒体系链和紧密接触形成中发挥关键作用的观点。

相似文献

1
The role of Mfn2 in the structure and function of endoplasmic reticulum-mitochondrial tethering in vivo.
J Cell Sci. 2021 Jul 1;134(13). doi: 10.1242/jcs.253443. Epub 2021 Jul 9.
3
Splice variants of mitofusin 2 shape the endoplasmic reticulum and tether it to mitochondria.
Science. 2023 Jun 23;380(6651):eadh9351. doi: 10.1126/science.adh9351.
4
Mfn2 localization in the ER is necessary for its bioenergetic function and neuritic development.
EMBO Rep. 2021 Sep 6;22(9):e51954. doi: 10.15252/embr.202051954. Epub 2021 Jul 23.
5
Mitofusin 2 ablation increases endoplasmic reticulum-mitochondria coupling.
Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):E2174-81. doi: 10.1073/pnas.1504880112. Epub 2015 Apr 13.
6
The ER-Mitochondria Tethering Complex VAPB-PTPIP51 Regulates Autophagy.
Curr Biol. 2017 Feb 6;27(3):371-385. doi: 10.1016/j.cub.2016.12.038. Epub 2017 Jan 26.
7
Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum-mitochondria tether.
Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):11249-11254. doi: 10.1073/pnas.1606786113. Epub 2016 Sep 19.
8
Disruption of endoplasmic reticulum-mitochondria tethering proteins in post-mortem Alzheimer's disease brain.
Neurobiol Dis. 2020 Sep;143:105020. doi: 10.1016/j.nbd.2020.105020. Epub 2020 Jul 17.
9
Mul1 restrains Parkin-mediated mitophagy in mature neurons by maintaining ER-mitochondrial contacts.
Nat Commun. 2019 Aug 13;10(1):3645. doi: 10.1038/s41467-019-11636-5.

引用本文的文献

1
The complex web of membrane contact sites in brain aging and neurodegeneration.
Cell Mol Life Sci. 2025 Aug 8;82(1):301. doi: 10.1007/s00018-025-05830-6.
4
Endosomal RFFL ubiquitin ligase regulates mitochondrial morphology by targeting mitofusin 2.
J Cell Sci. 2025 Jun 15;138(12). doi: 10.1242/jcs.263830. Epub 2025 Jun 20.
6
Decoding ischemic stroke: Perspectives on the endoplasmic reticulum, mitochondria, and their crosstalk.
Redox Biol. 2025 May;82:103622. doi: 10.1016/j.redox.2025.103622. Epub 2025 Mar 27.
7
Current research on mitochondria‑associated membranes in cardiovascular diseases (Review).
Mol Med Rep. 2025 Jun;31(6). doi: 10.3892/mmr.2025.13506. Epub 2025 Apr 4.
8
Mitochondrial dysfunction is a hallmark of woody breast myopathy in broiler chickens.
Front Physiol. 2025 Feb 17;16:1543788. doi: 10.3389/fphys.2025.1543788. eCollection 2025.
9
The role of Mitofusin-1 and Mitofusin-2 in periodontal disease: a comprehensive review.
Front Oral Health. 2025 Jan 17;6:1540178. doi: 10.3389/froh.2025.1540178. eCollection 2025.
10
Calcium bridges built by mitochondria-associated endoplasmic reticulum membranes: potential targets for neural repair in neurological diseases.
Neural Regen Res. 2025 Dec 1;20(12):3349-3369. doi: 10.4103/NRR.NRR-D-24-00630. Epub 2024 Nov 13.

本文引用的文献

1
Mitochondria dysfunction in the pathogenesis of Alzheimer's disease: recent advances.
Mol Neurodegener. 2020 May 29;15(1):30. doi: 10.1186/s13024-020-00376-6.
2
Mitochondria-Endoplasmic Reticulum Contacts in Reactive Astrocytes Promote Vascular Remodeling.
Cell Metab. 2020 Apr 7;31(4):791-808.e8. doi: 10.1016/j.cmet.2020.03.005. Epub 2020 Mar 26.
3
Mfn2 Ablation in the Adult Mouse Hippocampus and Cortex Causes Neuronal Death.
Cells. 2020 Jan 3;9(1):116. doi: 10.3390/cells9010116.
4
DJ-1 regulates the integrity and function of ER-mitochondria association through interaction with IP3R3-Grp75-VDAC1.
Proc Natl Acad Sci U S A. 2019 Dec 10;116(50):25322-25328. doi: 10.1073/pnas.1906565116. Epub 2019 Nov 25.
5
Mul1 restrains Parkin-mediated mitophagy in mature neurons by maintaining ER-mitochondrial contacts.
Nat Commun. 2019 Aug 13;10(1):3645. doi: 10.1038/s41467-019-11636-5.
6
Deficient Endoplasmic Reticulum-Mitochondrial Phosphatidylserine Transfer Causes Liver Disease.
Cell. 2019 May 2;177(4):881-895.e17. doi: 10.1016/j.cell.2019.04.010.
8
Mitochondria-associated membranes in aging and senescence: structure, function, and dynamics.
Cell Death Dis. 2018 Feb 28;9(3):332. doi: 10.1038/s41419-017-0105-5.
10
SPLICS: a split green fluorescent protein-based contact site sensor for narrow and wide heterotypic organelle juxtaposition.
Cell Death Differ. 2018 Jun;25(6):1131-1145. doi: 10.1038/s41418-017-0033-z. Epub 2017 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验