Suppr超能文献

对大量大鼠急性经口毒性数据进行构效关系(SAR)和定量构效关系(QSAR)建模。

SAR and QSAR modeling of a large collection of LD rat acute oral toxicity data.

作者信息

Gadaleta Domenico, Vuković Kristijan, Toma Cosimo, Lavado Giovanna J, Karmaus Agnes L, Mansouri Kamel, Kleinstreuer Nicole C, Benfenati Emilio, Roncaglioni Alessandra

机构信息

Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy.

Institute for Risk Assessment Sciences, Utrecht University, PO Box 80177, 3508 TD, Utrecht, The Netherlands.

出版信息

J Cheminform. 2019 Aug 30;11(1):58. doi: 10.1186/s13321-019-0383-2.

Abstract

The median lethal dose for rodent oral acute toxicity (LD50) is a standard piece of information required to categorize chemicals in terms of the potential hazard posed to human health after acute exposure. The exclusive use of in vivo testing is limited by the time and costs required for performing experiments and by the need to sacrifice a number of animals. (Quantitative) structure-activity relationships [(Q)SAR] proved a valid alternative to reduce and assist in vivo assays for assessing acute toxicological hazard. In the framework of a new international collaborative project, the NTP Interagency Center for the Evaluation of Alternative Toxicological Methods and the U.S. Environmental Protection Agency's National Center for Computational Toxicology compiled a large database of rat acute oral LD50 data, with the aim of supporting the development of new computational models for predicting five regulatory relevant acute toxicity endpoints. In this article, a series of regression and classification computational models were developed by employing different statistical and knowledge-based methodologies. External validation was performed to demonstrate the real-life predictability of models. Integrated modeling was then applied to improve performance of single models. Statistical results confirmed the relevance of developed models in regulatory frameworks, and confirmed the effectiveness of integrated modeling. The best integrated strategies reached RMSEs lower than 0.50 and the best classification models reached balanced accuracies over 0.70 for multi-class and over 0.80 for binary endpoints. Computed predictions will be hosted on the EPA's Chemistry Dashboard and made freely available to the scientific community.

摘要

啮齿动物经口急性毒性的半数致死剂量(LD50)是对化学品在急性暴露后对人类健康造成的潜在危害进行分类所需的标准信息。仅使用体内试验受到进行实验所需的时间和成本以及牺牲一定数量动物的需求的限制。(定量)构效关系[(Q)SAR]被证明是一种有效的替代方法,可减少并协助体内试验来评估急性毒理学危害。在一个新的国际合作项目框架内,美国国家毒理学计划跨部门替代毒理学方法评估中心和美国环境保护局国家计算毒理学中心汇编了一个大鼠经口急性LD50数据的大型数据库,目的是支持开发用于预测五个与监管相关的急性毒性终点的新计算模型。在本文中,采用了不同的统计和基于知识的方法开发了一系列回归和分类计算模型。进行了外部验证以证明模型在实际中的可预测性。然后应用集成建模来提高单个模型的性能。统计结果证实了所开发模型在监管框架中的相关性,并证实了集成建模的有效性。最佳集成策略的均方根误差(RMSE)低于0.50,最佳分类模型对于多分类终点的平衡准确率超过0.70,对于二元终点超过0.80。计算得到的预测结果将发布在美国环境保护局的化学仪表板上,并免费提供给科学界。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1e5/6717335/69228af31e46/13321_2019_383_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验