Suppr超能文献

抗药性动态:传染病的最优控制

Dynamics of Drug Resistance: Optimal Control of an Infectious Disease.

作者信息

Chehrazi Naveed, Cipriano Lauren E, Enns Eva A

机构信息

Department of Information, Risk, and Operations Management, McCombs School of Business, The University of Texas at Austin, Austin, TX.

Management Science, Ivey Business School, Western University, London, ON, Canada.

出版信息

Oper Res. 2019 May-Jun;67(3):599-904. doi: 10.1287/opre.2018.1817. Epub 2019 May 10.

Abstract

Antimicrobial resistance is a significant public health threat. In the U.S. alone, 2 million people are infected and 23,000 die each year from antibiotic resistant bacterial infections. In many cases, infections are resistant to all but a few remaining drugs. We examine the case where a single drug remains and solve for the optimal treatment policy for an SIS infectious disease model incorporating the effects of drug resistance. The problem is formulated as an optimal control problem with two continuous state variables, the disease prevalence and drug's "quality" (the fraction of infections that are drug-susceptible). The decision maker's objective is to minimize the discounted cost of the disease to society over an infinite horizon. We provide a new generalizable solution approach that allows us to thoroughly characterize the optimal treatment policy analytically. We prove that the optimal treatment policy is a bang-bang policy with a single switching time. The action/inaction regions can be described by a single boundary that is strictly increasing when viewed as a function of drug quality, indicating that when the disease transmission rate is constant, the policy of withholding treatment to preserve the drug for a potentially more serious future outbreak is not optimal. We show that the optimal value function and/or its derivatives are neither nor Lipschitz continuous suggesting that numerical approaches to this family of dynamic infectious disease models may not be computationally stable. Furthermore, we demonstrate that relaxing the standard assumption of constant disease transmission rate can fundamentally change the shape of the action region, add a singular arc to the optimal control, and make preserving the drug for a serious outbreak optimal. In addition, we apply our framework to the case of antibiotic resistant gonorrhea.

摘要

抗生素耐药性是一项重大的公共卫生威胁。仅在美国,每年就有200万人感染耐药细菌感染,2.3万人死亡。在许多情况下,感染对除了少数几种剩余药物之外的所有药物都具有抗性。我们研究了只剩下一种药物的情况,并求解了一个纳入耐药性影响的SIS传染病模型的最优治疗策略。该问题被表述为一个具有两个连续状态变量的最优控制问题,即疾病流行率和药物的“质量”(对药物敏感的感染比例)。决策者的目标是在无限期内将疾病给社会带来的贴现成本降至最低。我们提供了一种新的可推广的求解方法,使我们能够通过分析全面地刻画最优治疗策略。我们证明最优治疗策略是一种具有单个切换时间的开关控制策略。行动/不行动区域可以由一个单一边界来描述,当将其视为药物质量的函数时,该边界严格递增,这表明当疾病传播率恒定时,为了在未来可能更严重的疫情爆发中保留药物而不进行治疗的策略并非最优。我们表明最优值函数及其导数既不是连续的也不是利普希茨连续的,这表明针对这类动态传染病模型的数值方法在计算上可能不稳定。此外,我们证明放宽疾病传播率恒定的标准假设可以从根本上改变行动区域的形状,在最优控制中添加一条奇异弧,并使为严重疫情爆发保留药物成为最优策略。此外,我们将我们的框架应用于耐抗生素淋病的情况。

相似文献

1
Dynamics of Drug Resistance: Optimal Control of an Infectious Disease.
Oper Res. 2019 May-Jun;67(3):599-904. doi: 10.1287/opre.2018.1817. Epub 2019 May 10.
3
Malaria Surveillance - United States, 2016.
MMWR Surveill Summ. 2019 May 17;68(5):1-35. doi: 10.15585/mmwr.ss6805a1.
5
Optimal Data Injection Attacks in Cyber-Physical Systems.
IEEE Trans Cybern. 2018 Dec;48(12):3302-3312. doi: 10.1109/TCYB.2018.2846365. Epub 2018 Jun 26.
6
The switch point algorithm applied to a harvesting problem.
Math Biosci Eng. 2024 May 30;21(5):6123-6149. doi: 10.3934/mbe.2024269.
8
Policy Iteration Algorithm for Optimal Control of Stochastic Logical Dynamical Systems.
IEEE Trans Neural Netw Learn Syst. 2018 May;29(5):2031-2036. doi: 10.1109/TNNLS.2017.2661863. Epub 2017 Mar 6.
9
10
Optimal lockdown in altruistic economies.
J Math Econ. 2021 Mar;93:102488. doi: 10.1016/j.jmateco.2021.102488. Epub 2021 Feb 3.

引用本文的文献

1
Reframing Optimal Control Problems for Infectious Disease Management in Low-Income Countries.
Bull Math Biol. 2023 Mar 12;85(4):31. doi: 10.1007/s11538-023-01137-4.
2
A Refunding Scheme to Incentivize Narrow-Spectrum Antibiotic Development.
Bull Math Biol. 2022 Apr 22;84(6):59. doi: 10.1007/s11538-022-01013-7.
3
Comparing optimization criteria in antibiotic allocation protocols.
R Soc Open Sci. 2022 Mar 23;9(3):220181. doi: 10.1098/rsos.220181. eCollection 2022 Mar.
4
Optimal subscription models to pay for antibiotics.
Soc Sci Med. 2022 Apr;298:114818. doi: 10.1016/j.socscimed.2022.114818. Epub 2022 Feb 16.
5
The potential application of probiotics and prebiotics for the prevention and treatment of COVID-19.
NPJ Sci Food. 2020 Oct 5;4:17. doi: 10.1038/s41538-020-00078-9. eCollection 2020.

本文引用的文献

1
Ceftriaxone-Resistant Neisseria gonorrhoeae, Canada, 2017.
Emerg Infect Dis. 2018 Feb;24(2):381-3. doi: 10.3201/eid2402.171756. Epub 2018 Feb 17.
2
Multidrug-resistant infection with ceftriaxone resistance and intermediate resistance to azithromycin, Denmark, 2017.
Euro Surveill. 2017 Oct;22(42). doi: 10.2807/1560-7917.ES.2017.22.42.17-00659.
3
Multidrug-resistant gonorrhea: A research and development roadmap to discover new medicines.
PLoS Med. 2017 Jul 26;14(7):e1002366. doi: 10.1371/journal.pmed.1002366. eCollection 2017 Jul.
4
Antibiotic Prescribing for Nonbacterial Acute Upper Respiratory Infections in Elderly Persons.
Ann Intern Med. 2017 Jun 6;166(11):765-774. doi: 10.7326/M16-1131. Epub 2017 May 9.
5
Azithromycin Resistance and Decreased Ceftriaxone Susceptibility in Neisseria gonorrhoeae, Hawaii, USA.
Emerg Infect Dis. 2017 May;23(5):830-832. doi: 10.3201/eid2305.170088.
6
Diminishing Perceived Threat of AIDS and Increasing Sexual Risks of HIV Among Men Who Have Sex with Men, 1997-2015.
Arch Sex Behav. 2017 May;46(4):895-902. doi: 10.1007/s10508-016-0934-9. Epub 2017 Feb 6.
7
Public health response to the silent reintroduction of wild poliovirus to Israel, 2013-2014.
Clin Microbiol Infect. 2016 Dec 1;22 Suppl 5:S140-S145. doi: 10.1016/j.cmi.2016.06.018.
8
Antimicrobial resistance-a threat to neonate survival.
Lancet Glob Health. 2016 Oct;4(10):e676-7. doi: 10.1016/S2214-109X(16)30221-2.
10
Effect of two-step hygiene management on the prevention of nosocomial influenza in a season with high influenza activity.
J Hosp Infect. 2016 Oct;94(2):143-9. doi: 10.1016/j.jhin.2016.07.006. Epub 2016 Jul 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验