Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33143, USA.
Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, 4600 Rickenbacker Causeway, Miami, FL, 33149, USA.
Environ Microbiol. 2021 Aug;23(8):4098-4111. doi: 10.1111/1462-2920.15640. Epub 2021 Jun 22.
Lysogens are common at high bacterial densities, an observation that contrasts with the prevailing view of lysogeny as a low-density refugium strategy. Here, we review the mechanisms regulating lysogeny in complex communities and show that the additive effects of coinfections, diversity and host energic status yield a bimodal distribution of lysogeny as a function of microbial densities. At high cell densities (above 10 cells ml or g ) and low diversity, coinfections by two or more phages are frequent and excess energy availability stimulates inefficient metabolism. Both mechanisms favour phage integration and characterize the Piggyback-the-Winner dynamic. At low densities (below 10 cells ml or g ), starvation represses lytic genes and extends the time window for lysogenic commitment, resulting in a higher frequency of coinfections that cause integration. This pattern follows the predictions of the refugium hypothesis. At intermediary densities (between 10 and 10 cells ml or g ), encounter rates and efficient energy metabolism favour lysis. This may involve Kill-the-Winner lytic dynamics and induction. Based on these three regimes, we propose a framework wherein phage integration occurs more frequently at both ends of the host density gradient, with distinct underlying molecular mechanisms (coinfections and host metabolism) dominating at each extreme.
溶原菌在细菌高密度时很常见,这一观察结果与溶原性作为低密度避难所策略的主流观点形成了鲜明对比。在这里,我们回顾了调节复杂群落中溶原性的机制,并表明,共感染、多样性和宿主能量状态的附加效应导致溶原性作为微生物密度的函数呈双峰分布。在高细胞密度(高于 10 个细胞/ml 或 g)和低多样性时,两个或更多噬菌体的共感染很常见,并且过量的能量可用性刺激了低效代谢。这两种机制都有利于噬菌体的整合,并体现了“搭便车的赢家”动态。在低密度(低于 10 个细胞/ml 或 g)时,饥饿抑制裂解基因并延长溶原性承诺的时间窗口,导致更多导致整合的共感染。这种模式符合避难所假说的预测。在中间密度(在 10 到 10 个细胞/ml 或 g 之间),遭遇率和有效的能量代谢有利于裂解。这可能涉及“杀死赢家”的裂解动力学和诱导。基于这三个区域,我们提出了一个框架,其中噬菌体整合在宿主密度梯度的两端更频繁发生,具有不同的潜在分子机制(共感染和宿主代谢)在每个极端占主导地位。