Suppr超能文献

基于驾驶员自发视觉策略推导的车辆自动化状态的模型估计。

Model-based estimation of the state of vehicle automation as derived from the driver's spontaneous visual strategies.

作者信息

Schnebelen Damien, Charron Camilo, Mars Franck

机构信息

Université de Nantes, CNRS, LS2N, France.

University of Rennes 2, LS2N, France.

出版信息

J Eye Mov Res. 2021 Feb 9;12(3). doi: 10.16910/jemr.12.3.10.

Abstract

When manually steering a car, the driver's visual perception of the driving scene and his or her motor actions to control the vehicle are closely linked. Since motor behaviour is no longer required in an automated vehicle, the sampling of the visual scene is affected. Autonomous driving typically results in less gaze being directed towards the road centre and a broader exploration of the driving scene, compared to manual driving. To examine the corollary of this situation, this study estimated the state of automation (manual or automated) on the basis of gaze behaviour. To do so, models based on partial least square regressions were computed by considering the gaze behaviour in multiple ways, using static indicators (percentage of time spent gazing at 13 areas of interests), dynamic indicators (transition matrices between areas) or both together. Analysis of the quality of predictions for the different models showed that the best result was obtained by considering both static and dynamic indicators. However, gaze dynamics played the most important role in distinguishing between manual and automated driving. This study may be relevant to the issue of driver monitoring in autonomous vehicles.

摘要

在手动驾驶汽车时,驾驶员对驾驶场景的视觉感知与他或她控制车辆的 motor 动作紧密相连。由于在自动驾驶车辆中不再需要 motor 行为,视觉场景的采样受到影响。与手动驾驶相比,自动驾驶通常导致较少的目光指向道路中心,并且对驾驶场景的探索更广泛。为了研究这种情况的必然结果,本研究基于注视行为估计自动化状态(手动或自动)。为此,通过多种方式考虑注视行为,使用静态指标(注视 13 个感兴趣区域所花费的时间百分比)、动态指标(区域之间的转移矩阵)或两者结合,计算基于偏最小二乘回归的模型。对不同模型预测质量的分析表明,通过同时考虑静态和动态指标可获得最佳结果。然而,注视动态在区分手动驾驶和自动驾驶方面起着最重要的作用。这项研究可能与自动驾驶车辆中的驾驶员监测问题相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验