Suppr超能文献

使用隐马尔可夫模型进行扫视轨迹建模和分类。

Scanpath modeling and classification with hidden Markov models.

机构信息

CoMPLEX, University College London, London, UK.

Department of Psychology, The University of Hong Kong, Pok Fu Lam, Hong Kong.

出版信息

Behav Res Methods. 2018 Feb;50(1):362-379. doi: 10.3758/s13428-017-0876-8.

Abstract

How people look at visual information reveals fundamental information about them; their interests and their states of mind. Previous studies showed that scanpath, i.e., the sequence of eye movements made by an observer exploring a visual stimulus, can be used to infer observer-related (e.g., task at hand) and stimuli-related (e.g., image semantic category) information. However, eye movements are complex signals and many of these studies rely on limited gaze descriptors and bespoke datasets. Here, we provide a turnkey method for scanpath modeling and classification. This method relies on variational hidden Markov models (HMMs) and discriminant analysis (DA). HMMs encapsulate the dynamic and individualistic dimensions of gaze behavior, allowing DA to capture systematic patterns diagnostic of a given class of observers and/or stimuli. We test our approach on two very different datasets. Firstly, we use fixations recorded while viewing 800 static natural scene images, and infer an observer-related characteristic: the task at hand. We achieve an average of 55.9% correct classification rate (chance = 33%). We show that correct classification rates positively correlate with the number of salient regions present in the stimuli. Secondly, we use eye positions recorded while viewing 15 conversational videos, and infer a stimulus-related characteristic: the presence or absence of original soundtrack. We achieve an average 81.2% correct classification rate (chance = 50%). HMMs allow to integrate bottom-up, top-down, and oculomotor influences into a single model of gaze behavior. This synergistic approach between behavior and machine learning will open new avenues for simple quantification of gazing behavior. We release SMAC with HMM, a Matlab toolbox freely available to the community under an open-source license agreement.

摘要

人们观察视觉信息的方式揭示了他们的基本信息,包括他们的兴趣和心理状态。先前的研究表明,眼动轨迹(即观察者探索视觉刺激时的眼球运动序列)可以用于推断观察者相关(例如,手头任务)和刺激物相关(例如,图像语义类别)的信息。然而,眼动是复杂的信号,许多研究依赖于有限的注视描述符和特定数据集。在这里,我们提供了一种用于眼动轨迹建模和分类的即用型方法。该方法依赖于变分隐马尔可夫模型(HMM)和判别分析(DA)。HMM 封装了注视行为的动态和个体维度,允许 DA 捕获系统模式,这些模式是给定观察者和/或刺激物类别的诊断特征。我们在两个非常不同的数据集上测试了我们的方法。首先,我们使用在观看 800 张静态自然场景图像时记录的注视点,推断出与观察者相关的特征:手头的任务。我们实现了平均 55.9%的正确分类率(机会为 33%)。我们表明,正确分类率与刺激物中存在的显著区域数量呈正相关。其次,我们使用在观看 15 个会话视频时记录的眼动位置,推断出与刺激物相关的特征:是否存在原始音轨。我们实现了平均 81.2%的正确分类率(机会为 50%)。HMM 允许将自下而上、自上而下和眼动的影响整合到一个注视行为的单一模型中。这种行为和机器学习之间的协同方法将为注视行为的简单量化开辟新的途径。我们发布了带有 HMM 的 SMAC,这是一个 Matlab 工具箱,以开源许可证协议的形式免费提供给社区。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a80/5809577/49bdd49435b8/13428_2017_876_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验