Suppr超能文献

用于食管光学相干断层扫描图像分割的组织自注意力网络

Tissue self-attention network for the segmentation of optical coherence tomography images on the esophagus.

作者信息

Wang Cong, Gan Meng

机构信息

Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.

出版信息

Biomed Opt Express. 2021 Apr 7;12(5):2631-2646. doi: 10.1364/BOE.419809. eCollection 2021 May 1.

Abstract

Automatic segmentation of layered tissue is the key to esophageal optical coherence tomography (OCT) image processing. With the advent of deep learning techniques, frameworks based on a fully convolutional network are proved to be effective in classifying pixels on images. However, due to speckle noise and unfavorable imaging conditions, the esophageal tissue relevant to the diagnosis is not always easy to identify. An effective approach to address this problem is extracting more powerful feature maps, which have similar expressions for pixels in the same tissue and show discriminability from those from different tissues. In this study, we proposed a novel framework, called the tissue self-attention network (TSA-Net), which introduces the self-attention mechanism for esophageal OCT image segmentation. The self-attention module in the network is able to capture long-range context dependencies from the image and analyzes the input image in a global view, which helps to cluster pixels in the same tissue and reveal differences of different layers, thus achieving more powerful feature maps for segmentation. Experiments have visually illustrated the effectiveness of the self-attention map, and its advantages over other deep networks were also discussed.

摘要

分层组织的自动分割是食管光学相干断层扫描(OCT)图像处理的关键。随着深度学习技术的出现,基于全卷积网络的框架被证明在图像像素分类方面是有效的。然而,由于散斑噪声和不利的成像条件,与诊断相关的食管组织并不总是易于识别。解决这个问题的一种有效方法是提取更强大的特征图,这些特征图对于同一组织中的像素具有相似的表达,并且与来自不同组织的像素表现出可区分性。在本研究中,我们提出了一种新颖的框架,称为组织自注意力网络(TSA-Net),它将自注意力机制引入食管OCT图像分割。网络中的自注意力模块能够从图像中捕获长距离上下文依赖关系,并从全局视角分析输入图像,这有助于将同一组织中的像素聚类,并揭示不同层的差异,从而实现更强大的用于分割的特征图。实验直观地说明了自注意力图的有效性,并讨论了其相对于其他深度网络的优势。

相似文献

1
Tissue self-attention network for the segmentation of optical coherence tomography images on the esophagus.
Biomed Opt Express. 2021 Apr 7;12(5):2631-2646. doi: 10.1364/BOE.419809. eCollection 2021 May 1.
2
Adversarial convolutional network for esophageal tissue segmentation on OCT images.
Biomed Opt Express. 2020 May 18;11(6):3095-3110. doi: 10.1364/BOE.394715. eCollection 2020 Jun 1.
4
Wavelet attention network for the segmentation of layer structures on OCT images.
Biomed Opt Express. 2022 Nov 2;13(12):6167-6181. doi: 10.1364/BOE.475272. eCollection 2022 Dec 1.
5
RSU-Net: U-net based on residual and self-attention mechanism in the segmentation of cardiac magnetic resonance images.
Comput Methods Programs Biomed. 2023 Apr;231:107437. doi: 10.1016/j.cmpb.2023.107437. Epub 2023 Feb 21.
7
Lens structure segmentation from AS-OCT images via shape-based learning.
Comput Methods Programs Biomed. 2023 Mar;230:107322. doi: 10.1016/j.cmpb.2022.107322. Epub 2022 Dec 23.
8
SW-UNet: a U-Net fusing sliding window transformer block with CNN for segmentation of lung nodules.
Front Med (Lausanne). 2023 Sep 28;10:1273441. doi: 10.3389/fmed.2023.1273441. eCollection 2023.
9
Double-branched and area-constraint fully convolutional networks for automated serous retinal detachment segmentation in SD-OCT images.
Comput Methods Programs Biomed. 2019 Jul;176:69-80. doi: 10.1016/j.cmpb.2019.04.027. Epub 2019 Apr 24.

引用本文的文献

1
Wavelet attention network for the segmentation of layer structures on OCT images.
Biomed Opt Express. 2022 Nov 2;13(12):6167-6181. doi: 10.1364/BOE.475272. eCollection 2022 Dec 1.
3
Esophageal optical coherence tomography image synthesis using an adversarially learned variational autoencoder.
Biomed Opt Express. 2022 Feb 3;13(3):1188-1201. doi: 10.1364/BOE.449796. eCollection 2022 Mar 1.
4
Connectivity-based deep learning approach for segmentation of the epithelium in human esophageal OCT images.
Biomed Opt Express. 2021 Sep 15;12(10):6326-6340. doi: 10.1364/BOE.434775. eCollection 2021 Oct 1.

本文引用的文献

1
Adversarial convolutional network for esophageal tissue segmentation on OCT images.
Biomed Opt Express. 2020 May 18;11(6):3095-3110. doi: 10.1364/BOE.394715. eCollection 2020 Jun 1.
2
Deep learning segmentation for optical coherence tomography measurements of the lower tear meniscus.
Biomed Opt Express. 2020 Feb 20;11(3):1539-1554. doi: 10.1364/BOE.386228. eCollection 2020 Mar 1.
3
Deep learning-based single-shot prediction of differential effects of anti-VEGF treatment in patients with diabetic macular edema.
Biomed Opt Express. 2020 Jan 28;11(2):1139-1152. doi: 10.1364/BOE.379150. eCollection 2020 Feb 1.
4
Automated diagnosis and segmentation of choroidal neovascularization in OCT angiography using deep learning.
Biomed Opt Express. 2020 Jan 14;11(2):927-944. doi: 10.1364/BOE.379977. eCollection 2020 Feb 1.
5
Reducing image variability across OCT devices with unsupervised unpaired learning for improved segmentation of retina.
Biomed Opt Express. 2019 Dec 20;11(1):346-363. doi: 10.1364/BOE.379978. eCollection 2020 Jan 1.
6
MRLN: Multi-Task Relational Learning Network for MRI Vertebral Localization, Identification, and Segmentation.
IEEE J Biomed Health Inform. 2020 Oct;24(10):2902-2911. doi: 10.1109/JBHI.2020.2969084. Epub 2020 Jan 23.
7
CR-Unet: A Composite Network for Ovary and Follicle Segmentation in Ultrasound Images.
IEEE J Biomed Health Inform. 2020 Apr;24(4):974-983. doi: 10.1109/JBHI.2019.2946092. Epub 2019 Oct 7.
8
Automated Quantification of Hyperreflective Foci in SD-OCT With Diabetic Retinopathy.
IEEE J Biomed Health Inform. 2020 Apr;24(4):1125-1136. doi: 10.1109/JBHI.2019.2929842. Epub 2019 Jul 19.
9
Joint retina segmentation and classification for early glaucoma diagnosis.
Biomed Opt Express. 2019 Apr 30;10(5):2639-2656. doi: 10.1364/BOE.10.002639. eCollection 2019 May 1.
10
Parallel deep neural networks for endoscopic OCT image segmentation.
Biomed Opt Express. 2019 Feb 7;10(3):1126-1135. doi: 10.1364/BOE.10.001126. eCollection 2019 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验