Suppr超能文献

用于早期青光眼诊断的联合视网膜分割与分类

Joint retina segmentation and classification for early glaucoma diagnosis.

作者信息

Wang Jie, Wang Zhe, Li Fei, Qu Guoxiang, Qiao Yu, Lv Hairong, Zhang Xiulan

机构信息

Department of Automation, Tsinghua University, Beijing, China.

SenseTime Group Limited, Beijing, China.

出版信息

Biomed Opt Express. 2019 Apr 30;10(5):2639-2656. doi: 10.1364/BOE.10.002639. eCollection 2019 May 1.

Abstract

We propose a joint segmentation and classification deep model for early glaucoma diagnosis using retina imaging with optical coherence tomography (OCT). Our motivation roots in the observation that ophthalmologists make the clinical decision by analyzing the retinal nerve fiber layer (RNFL) from OCT images. To simulate this process, we propose a novel deep model that joins the retinal layer segmentation and glaucoma classification. Our model consists of three parts. First, the segmentation network simultaneously predicts both six retinal layers and five boundaries between them. Then, we introduce a post processing algorithm to fuse the two results while enforcing the topology correctness. Finally, the classification network takes the RNFL thickness vector as input and outputs the probability of being glaucoma. In the classification network, we propose a carefully designed module to implement the clinical strategy to diagnose glaucoma. We validate our method both in a collected dataset of 1004 circular OCT B-Scans from 234 subjects and in a public dataset of 110 B-Scans from 10 patients with diabetic macular edema. Experimental results demonstrate that our method achieves superior segmentation performance than other state-of-the-art methods both in our collected dataset and in public dataset with severe retina pathology. For glaucoma classification, our model achieves diagnostic accuracy of 81.4% with AUC of 0.864, which clearly outperforms baseline methods.

摘要

我们提出了一种用于早期青光眼诊断的联合分割与分类深度模型,该模型利用光学相干断层扫描(OCT)视网膜成像技术。我们的动机源于这样的观察:眼科医生通过分析OCT图像中的视网膜神经纤维层(RNFL)来做出临床诊断。为了模拟这一过程,我们提出了一种新颖的深度模型,该模型将视网膜层分割与青光眼分类相结合。我们的模型由三部分组成。首先,分割网络同时预测六个视网膜层及其之间的五个边界。然后,我们引入一种后处理算法来融合这两个结果,同时确保拓扑结构的正确性。最后,分类网络将RNFL厚度向量作为输入,并输出患青光眼的概率。在分类网络中,我们提出了一个精心设计的模块来实施诊断青光眼的临床策略。我们在一个收集的包含来自234名受试者的1004幅圆形OCT B扫描图像的数据集以及一个包含来自10名糖尿病性黄斑水肿患者的110幅B扫描图像的公共数据集中对我们的方法进行了验证。实验结果表明,在我们收集的数据集以及存在严重视网膜病变的公共数据集中,我们的方法在分割性能上优于其他现有方法。对于青光眼分类,我们的模型诊断准确率达到81.4%,曲线下面积(AUC)为0.864,明显优于基线方法。

相似文献

1
Joint retina segmentation and classification for early glaucoma diagnosis.用于早期青光眼诊断的联合视网膜分割与分类
Biomed Opt Express. 2019 Apr 30;10(5):2639-2656. doi: 10.1364/BOE.10.002639. eCollection 2019 May 1.

引用本文的文献

5
Clinical Applications of Artificial Intelligence in Glaucoma.人工智能在青光眼领域的临床应用
J Ophthalmic Vis Res. 2023 Feb 21;18(1):97-112. doi: 10.18502/jovr.v18i1.12730. eCollection 2023 Jan-Mar.

本文引用的文献

1
Towards Topological Correct Segmentation of Macular OCT from Cascaded FCNs.基于级联全卷积网络的黄斑光学相干断层扫描拓扑正确分割方法
Fetal Infant Ophthalmic Med Image Anal (2017). 2017 Sep;10554:202-209. doi: 10.1007/978-3-319-67561-9_23. Epub 2017 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验