Suppr超能文献

利用同相深度神经网络(Ip-DNN)从分子性质和分析数据预测溶解度

Solubility Prediction from Molecular Properties and Analytical Data Using an In-phase Deep Neural Network (Ip-DNN).

作者信息

Kurotani Atsushi, Kakiuchi Toshifumi, Kikuchi Jun

机构信息

RIKEN Center for Sustainable Resource Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.

AGC Yokohama Technical Center, 1-1 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.

出版信息

ACS Omega. 2021 May 17;6(22):14278-14287. doi: 10.1021/acsomega.1c01035. eCollection 2021 Jun 8.

Abstract

Materials informatics is an emerging field that allows us to predict the properties of materials and has been applied in various research and development fields, such as materials science. In particular, solubility factors such as the Hansen and Hildebrand solubility parameters (HSPs and SP, respectively) and Log are important values for understanding the physical properties of various substances. In this study, we succeeded at establishing a solubility prediction tool using a unique machine learning method called the in-phase deep neural network (ip-DNN), which starts exclusively from the analytical input data (e.g., NMR information, refractive index, and density) to predict solubility by predicting intermediate elements, such as molecular components and molecular descriptors, in the multiple-step method. For improving the level of accuracy of the prediction, intermediate regression models were employed when performing in-phase machine learning. In addition, we developed a website dedicated to the established solubility prediction method, which is freely available at "http://dmar.riken.jp/matsolca/".

摘要

材料信息学是一个新兴领域,它使我们能够预测材料的性能,并已应用于各种研发领域,如材料科学。特别是,诸如汉森溶解度参数和希尔德布兰德溶解度参数(分别为HSPs和SP)以及Log等溶解度因子是理解各种物质物理性质的重要数值。在本研究中,我们成功地使用一种名为同相深度神经网络(ip-DNN)的独特机器学习方法建立了一种溶解度预测工具,该方法仅从分析输入数据(如核磁共振信息、折射率和密度)开始,通过多步方法预测中间元素(如分子成分和分子描述符)来预测溶解度。为了提高预测的准确性,在进行同相机器学习时采用了中间回归模型。此外,我们还开发了一个专门用于已建立的溶解度预测方法的网站,该网站可在“http://dmar.riken.jp/matsolca/”上免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b33/8190808/798f862f1612/ao1c01035_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验