Suppr超能文献

基于级联卷积对抗网络的腹部多器官分割。

Abdominal multi-organ segmentation with cascaded convolutional and adversarial deep networks.

机构信息

IMT Atlantique, Technopôle Brest-Iroise, 29238 Brest, France; LaTIM UMR 1101, Inserm, 22 avenue Camille Desmoulins, 29238 Brest, France.

Dokuz Eylul University, Cumhuriyet Bulvarı, 35210 Izmir, Turkey.

出版信息

Artif Intell Med. 2021 Jul;117:102109. doi: 10.1016/j.artmed.2021.102109. Epub 2021 May 14.

Abstract

Abdominal anatomy segmentation is crucial for numerous applications from computer-assisted diagnosis to image-guided surgery. In this context, we address fully-automated multi-organ segmentation from abdominal CT and MR images using deep learning. The proposed model extends standard conditional generative adversarial networks. Additionally to the discriminator which enforces the model to create realistic organ delineations, it embeds cascaded partially pre-trained convolutional encoder-decoders as generator. Encoder fine-tuning from a large amount of non-medical images alleviates data scarcity limitations. The network is trained end-to-end to benefit from simultaneous multi-level segmentation refinements using auto-context. Employed for healthy liver, kidneys and spleen segmentation, our pipeline provides promising results by outperforming state-of-the-art encoder-decoder schemes. Followed for the Combined Healthy Abdominal Organ Segmentation (CHAOS) challenge organized in conjunction with the IEEE International Symposium on Biomedical Imaging 2019, it gave us the first rank for three competition categories: liver CT, liver MR and multi-organ MR segmentation. Combining cascaded convolutional and adversarial networks strengthens the ability of deep learning pipelines to automatically delineate multiple abdominal organs, with good generalization capability. The comprehensive evaluation provided suggests that better guidance could be achieved to help clinicians in abdominal image interpretation and clinical decision making.

摘要

腹部解剖结构分割对于从计算机辅助诊断到图像引导手术等众多应用都至关重要。在这种情况下,我们使用深度学习来解决来自腹部 CT 和 MRI 图像的全自动多器官分割问题。所提出的模型扩展了标准条件生成对抗网络。除了强制模型创建逼真器官描绘的鉴别器外,它还嵌入级联部分预训练的卷积编码器-解码器作为生成器。从大量非医学图像进行的编码器微调减轻了数据稀缺性限制。该网络是端到端训练的,可通过使用自动上下文同时进行多级分割细化来受益。我们的流水线用于健康肝脏、肾脏和脾脏分割,通过超越最先进的编码器-解码器方案,提供了有前景的结果。该流水线在 2019 年 IEEE 国际生物医学成像研讨会联合组织的联合健康腹部器官分割 (CHAOS) 挑战赛中得到了应用,在三个竞赛类别中获得了第一名:肝脏 CT、肝脏 MRI 和多器官 MRI 分割。级联卷积和对抗网络的结合增强了深度学习管道自动描绘多个腹部器官的能力,具有良好的泛化能力。提供的综合评估表明,可以实现更好的指导,以帮助临床医生进行腹部图像解释和临床决策。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验