IEEE Trans Med Imaging. 2021 Dec;40(12):3507-3518. doi: 10.1109/TMI.2021.3089547. Epub 2021 Nov 30.
Detecting synaptic clefts is a crucial step to investigate the biological function of synapses. The volume electron microscopy (EM) allows the identification of synaptic clefts by photoing EM images with high resolution and fine details. Machine learning approaches have been employed to automatically predict synaptic clefts from EM images. In this work, we propose a novel and augmented deep learning model, known as CleftNet, for improving synaptic cleft detection from brain EM images. We first propose two novel network components, known as the feature augmentor and the label augmentor, for augmenting features and labels to improve cleft representations. The feature augmentor can fuse global information from inputs and learn common morphological patterns in clefts, leading to augmented cleft features. In addition, it can generate outputs with varying dimensions, making it flexible to be integrated in any deep network. The proposed label augmentor augments the label of each voxel from a value to a vector, which contains both the segmentation label and boundary label. This allows the network to learn important shape information and to produce more informative cleft representations. Based on the proposed feature augmentor and label augmentor, We build the CleftNet as a U-Net like network. The effectiveness of our methods is evaluated on both external and internal tasks. Our CleftNet currently ranks #1 on the external task of the CREMI open challenge. In addition, both quantitative and qualitative results in the internal tasks show that our method outperforms the baseline approaches significantly.
检测突触间隙是研究突触生物学功能的关键步骤。体视学电子显微镜 (EM) 通过拍摄具有高分辨率和细微细节的 EM 图像来识别突触间隙。机器学习方法已被用于从 EM 图像中自动预测突触间隙。在这项工作中,我们提出了一种新颖的增强深度学习模型,称为 CleftNet,用于提高从脑 EM 图像中检测突触间隙的能力。我们首先提出了两个新颖的网络组件,称为特征增强器和标签增强器,用于增强特征和标签以改善间隙表示。特征增强器可以融合来自输入的全局信息并学习间隙中的常见形态模式,从而生成增强的间隙特征。此外,它可以生成具有不同维度的输出,使其灵活地集成到任何深度网络中。所提出的标签增强器将每个体素的标签从值扩展为向量,其中包含分割标签和边界标签。这允许网络学习重要的形状信息,并生成更具信息量的间隙表示。基于所提出的特征增强器和标签增强器,我们构建了类似于 U-Net 的 CleftNet。我们的方法在外部和内部任务上的有效性都得到了评估。我们的 CleftNet 在 CREMI 开放挑战的外部任务中目前排名第一。此外,内部任务的定量和定性结果都表明,我们的方法明显优于基线方法。