Zhang Angela, Shailja S, Borba Cezar, Miao Yishen, Goebel Michael, Ruschel Raphael, Ryan Kerrianne, Smith William, Manjunath B S
Vision Research Laboratory, University of California, Santa Barbara, Santa Barbara, California, USA.
Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, USA.
Biol Imaging. 2022 Jul 29;2:e6. doi: 10.1017/S2633903X2200006X. eCollection 2022.
This paper presents a deep-learning-based workflow to detect synapses and predict their neurotransmitter type in the primitive chordate () electron microscopic (EM) images. Identifying synapses from EM images to build a full map of connections between neurons is a labor-intensive process and requires significant domain expertise. Automation of synapse classification would hasten the generation and analysis of connectomes. Furthermore, inferences concerning neuron type and function from synapse features are in many cases difficult to make. Finding the connection between synapse structure and function is an important step in fully understanding a connectome. Class Activation Maps derived from the convolutional neural network provide insights on important features of synapses based on cell type and function. The main contribution of this work is in the differentiation of synapses by neurotransmitter type through the structural information in their EM images. This enables the prediction of neurotransmitter types for neurons in , which were previously unknown. The prediction model with code is available on GitHub.
本文提出了一种基于深度学习的工作流程,用于在原始脊索动物的电子显微镜(EM)图像中检测突触并预测其神经递质类型。从EM图像中识别突触以构建神经元之间的完整连接图谱是一个劳动密集型过程,需要大量的领域专业知识。突触分类的自动化将加速连接组的生成和分析。此外,在许多情况下,从突触特征推断神经元类型和功能是困难的。找到突触结构与功能之间的联系是全面理解连接组的重要一步。从卷积神经网络导出的类激活映射基于细胞类型和功能提供了关于突触重要特征的见解。这项工作的主要贡献在于通过EM图像中的结构信息按神经递质类型区分突触。这使得能够预测此前未知的原始脊索动物中神经元的神经递质类型。带有代码的预测模型可在GitHub上获取。