Suppr超能文献

使用具身机器人研究社会认知:与机器人的先前经验是否会影响赌博任务中与反馈相关的学习?

Examining Social Cognition with Embodied Robots: Does Prior Experience with a Robot Impact Feedback-associated Learning in a Gambling Task?

作者信息

Abubshait Abdulaziz, McDonald Craig G, Wiese Eva

机构信息

George Mason University, US.

Italian Institute of Technology, IT.

出版信息

J Cogn. 2021 May 31;4(1):28. doi: 10.5334/joc.167.

Abstract

Social agents rely on the ability to use feedback to learn and modify their behavior. The extent to which this happens in social contexts depends on motivational, cognitive and/or affective parameters. For instance, feedback-associated learning occurs at different rates when the outcome of an action (e.g., winning or losing in a gambling task) affects oneself ("Self") versus another human ("Other"). Here, we examine whether similar context effects on feedback-associated learning can also be observed when the "other" is a social robot (here: Cozmo). We additionally examine whether a "hybrid" version of the gambling paradigm, where participants are free to engage in a dynamic interaction with a robot, then move to a controlled screen-based experiment can be used to examine social cognition in human-robot interaction. This hybrid method is an alternative to current designs where researchers examine the effect of the interaction on social cognition during the interaction with the robot. For that purpose, three groups of participants (n total = 60) interacted with Cozmo over different time periods (no interaction vs. a single 20 minute interaction in the lab vs. daily 20 minute interactions over five consecutive days at home) before performing the gambling task in the lab. The results indicate that prior interactions impact the degree to which participants benefit from feedback during the gambling task, with overall worse learning immediately after short-term interactions with the robot and better learning in the "Self" versus "Other" condition after repeated interactions with the robot. These results indicate that "hybrid" paradigms are a suitable option to investigate social cognition in human-robot interaction when a fully dynamic implementation (i.e., interaction and measurement dynamic) is not feasible.

摘要

社会主体依赖于利用反馈来学习和改变自身行为的能力。这种情况在社会环境中发生的程度取决于动机、认知和/或情感参数。例如,当一个行为的结果(如在赌博任务中赢或输)影响自己(“自我”)与影响另一个人(“他人”)时,与反馈相关的学习会以不同的速度发生。在此,我们研究当“他人”是一个社交机器人(这里指科兹莫)时,是否也能观察到对与反馈相关学习的类似情境效应。我们还研究了一种赌博范式的“混合”版本,即参与者可以自由地与机器人进行动态互动,然后转向基于屏幕的受控实验,是否可用于研究人机交互中的社会认知。这种混合方法是当前设计的一种替代方案,在当前设计中,研究人员在与机器人交互过程中研究交互对社会认知的影响。为此,三组参与者(总共n = 60)在实验室中进行赌博任务之前,在不同时间段与科兹莫进行了互动(无互动、在实验室进行一次20分钟的互动、在家中连续五天每天进行20分钟的互动)。结果表明,先前的互动会影响参与者在赌博任务中从反馈中受益的程度,与机器人进行短期互动后,整体学习效果立即变差,而在与机器人反复互动后,“自我”与“他人”条件下的学习效果更好。这些结果表明,当完全动态的实施方式(即互动和测量都是动态的)不可行时,“混合”范式是研究人机交互中社会认知的合适选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33b0/8176931/3f139ec2174e/joc-4-1-167-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验