Department of Biochemistry, University of Torontogrid.17063.33, Toronto, Ontario, Canada.
Department of Molecular Genetics, University of Torontogrid.17063.33, Toronto, Ontario, Canada.
Appl Environ Microbiol. 2021 Aug 11;87(17):e0046721. doi: 10.1128/AEM.00467-21.
Legionella pneumophila is a ubiquitous freshwater pathogen and the causative agent of Legionnaires' disease. L. pneumophila growth within protists provides a refuge from desiccation, disinfection, and other remediation strategies. One outstanding question has been whether this protection extends to phages. L. pneumophila isolates are remarkably devoid of prophages and to date no phages have been identified. Nevertheless, many L. pneumophila isolates maintain active CRISPR-Cas defenses. So far, the only known target of these systems is an episomal element that we previously named mobile element 1 (LME-1). The continued expansion of publicly available genomic data promises to further our understanding of the role of these systems. We now describe over 150 CRISPR-Cas systems across 600 isolates to establish the clearest picture yet of L. pneumophila's adaptive defenses. By searching for targets of 1,500 unique CRISPR-Cas spacers, LME-1 remains the only identified CRISPR-Cas targeted integrative element. We identified 3 additional LME-1 variants-all targeted by previously and newly identified CRISPR-Cas spacers-but no other similar elements. Notably, we also identified several spacers with significant sequence similarity to microviruses, specifically those within the subfamily . These spacers are found across several different CRISPR-Cas arrays isolated from geographically diverse isolates, indicating recurrent encounters with these phages. Our analysis of the extended CRISPR-Cas spacer catalog leads to two main conclusions: current data argue against CRISPR-Cas targeted integrative elements beyond LME-1, and the heretofore unknown L. pneumophila phages are most likely lytic gokushoviruses. Legionnaires' disease is an often-fatal pneumonia caused by Legionella pneumophila, which normally grows inside amoebae and other freshwater protists. L. pneumophila trades diminished access to nutrients for the protection and isolation provided by the host. One outstanding question is whether L. pneumophila is susceptible to phages, given the protection provided by its intracellular lifestyle. In this work, we use CRISPR spacer sequences as a record of phage infection to predict that the "missing" L. pneumophila phages belong to the microvirus subfamily . Gokushoviruses are known to infect another intracellular pathogen, Chlamydia. How do gokushoviruses access L. pneumophila (and Chlamydia) inside their "cozy niches"? Does exposure to phages happen during a transient extracellular period (during cell-to-cell spread) or is it indicative of a more complicated environmental lifestyle? One thing is clear, 100 years after their discovery, phages continue to hold important secrets about the bacteria upon which they prey.
嗜肺军团菌是一种普遍存在于淡水环境中的病原体,也是军团病的致病原。在原生动物体内,嗜肺军团菌的生长为其提供了免受干燥、消毒和其他修复策略影响的避难所。一个悬而未决的问题是,这种保护是否会延伸到噬菌体。嗜肺军团菌分离株中明显缺乏前噬菌体,迄今为止尚未鉴定出任何噬菌体。然而,许多嗜肺军团菌分离株仍保持着活跃的 CRISPR-Cas 防御系统。到目前为止,这些系统的唯一已知靶点是我们之前命名为移动元件 1 (LME-1)的一个外源性元件。随着公共基因组数据的不断扩展,有望进一步了解这些系统的作用。我们现在在 600 个分离株中描述了超过 150 个 CRISPR-Cas 系统,以建立迄今为止最清晰的嗜肺军团菌适应性防御图景。通过搜索 1500 个独特的 CRISPR-Cas 间隔物的靶点,LME-1 仍然是唯一确定的 CRISPR-Cas 靶向整合元件。我们发现了 3 个额外的 LME-1 变体,均为先前和新鉴定的 CRISPR-Cas 间隔物的靶点,但没有其他类似的元件。值得注意的是,我们还发现了一些与微病毒具有显著序列相似性的间隔物,特别是亚科中的那些。这些间隔物存在于来自地理多样化分离株的几种不同的 CRISPR-Cas 阵列中,表明它们与这些噬菌体的反复接触。我们对扩展的 CRISPR-Cas 间隔物目录的分析得出两个主要结论:目前的数据反对除 LME-1 以外的 CRISPR-Cas 靶向整合元件,而迄今为止未知的嗜肺军团菌噬菌体很可能是裂解性 gokushoviruses。军团病是一种由嗜肺军团菌引起的常致命性肺炎,这种细菌通常在变形虫和其他淡水原生动物体内生长。嗜肺军团菌为了获取营养而牺牲了对宿主的接触和隔离。一个悬而未决的问题是,鉴于其细胞内生活方式提供的保护,嗜肺军团菌是否容易受到噬菌体的影响。在这项工作中,我们使用 CRISPR 间隔序列作为噬菌体感染的记录,预测“缺失”的嗜肺军团菌噬菌体属于微病毒亚科。gokushoviruses 已知会感染另一种细胞内病原体衣原体。gokushoviruses 如何进入其“舒适的栖息地”内的嗜肺军团菌(和衣原体)?噬菌体的暴露是发生在短暂的细胞间传播的细胞外期,还是表明了更复杂的环境生活方式?有一件事是清楚的,在它们被发现 100 年后,噬菌体继续揭示着它们以之为食的细菌的重要秘密。