Suppr超能文献

用于自适应放射治疗中头颈部肿瘤自动MRI分割的增强型nnU-Net架构

Enhanced nnU-Net Architectures for Automated MRI Segmentation of Head and Neck Tumors in Adaptive Radiation Therapy.

作者信息

Kächele Jessica, Zenk Maximilian, Rokuss Maximilian, Ulrich Constantin, Wald Tassilo, Maier-Hein Klaus H

机构信息

German Cancer Research Center (DKFZ), Heidelberg, Germany.

Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany.

出版信息

Head Neck Tumor Segm MR Guid Appl (2024). 2025;15273:50-64. doi: 10.1007/978-3-031-83274-1_3. Epub 2025 Mar 3.

Abstract

The increasing utilization of MRI in radiation therapy planning for head and neck cancer (HNC) highlights the need for precise tumor segmentation to enhance treatment efficacy and reduce side effects. This work presents segmentation models developed for the HNTS-MRG 2024 challenge by the team mic-dkfz, focusing on automated segmentation of HNC tumors from MRI images at two radiotherapy (RT) stages: before (pre-RT) and 2-4 weeks into RT (mid-RT). For Task 1 (pre-RT segmentation), we built upon the nnU-Net framework, enhancing it with the larger Residual Encoder architecture. We incorporated extensive data augmentation and applied transfer learning by pre-training the model on a diverse set of public 3D medical imaging datasets. For Task 2 (mid-RT segmentation), we adopted a longitudinal approach by integrating registered pre-RT images and their segmentations as additional inputs into the nnU-Net framework. On the test set, our models achieved mean aggregated Dice Similarity Coefficient (aggDSC) scores of 81.2 for Task 1 and 72.7 for Task 2. Especially the primary tumor (GTVp) segmentation is challenging and presents potential for further optimization. These results demonstrate the effectiveness of combining advanced architectures, transfer learning, and longitudinal data integration for automated tumor segmentation in MRI-guided adaptive radiation therapy.

摘要

磁共振成像(MRI)在头颈癌(HNC)放射治疗计划中的应用日益增加,这凸显了精确肿瘤分割的必要性,以提高治疗效果并减少副作用。这项工作展示了由mic-dkfz团队为2024年HNTS-MRG挑战赛开发的分割模型,重点是在两个放射治疗(RT)阶段从MRI图像中自动分割HNC肿瘤:放疗前(RT前)和放疗开始2至4周(RT中期)。对于任务1(RT前分割),我们基于nnU-Net框架构建,并用更大的残差编码器架构对其进行增强。我们纳入了广泛的数据增强,并通过在各种公共3D医学成像数据集上对模型进行预训练来应用迁移学习。对于任务2(RT中期分割),我们采用了纵向方法,将配准后的RT前图像及其分割结果作为额外输入整合到nnU-Net框架中。在测试集上,我们的模型在任务1中实现了平均聚合骰子相似系数(aggDSC)得分81.2,在任务2中实现了72.7。特别是原发肿瘤(GTVp)分割具有挑战性,仍有进一步优化的潜力。这些结果证明了在MRI引导的自适应放射治疗中,结合先进架构、迁移学习和纵向数据整合进行自动肿瘤分割的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/12023904/ca329c47ac41/nihms-2063606-f0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验