Suppr超能文献

CAT-DTI:具有域自适应的交叉注意和 Transformer 网络的药物-靶标相互作用预测。

CAT-DTI: cross-attention and Transformer network with domain adaptation for drug-target interaction prediction.

机构信息

School of Computer and Software, Shenzhen University, Shenzhen, 518060, China.

Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.

出版信息

BMC Bioinformatics. 2024 Apr 2;25(1):141. doi: 10.1186/s12859-024-05753-2.

Abstract

Accurate and efficient prediction of drug-target interaction (DTI) is critical to advance drug development and reduce the cost of drug discovery. Recently, the employment of deep learning methods has enhanced DTI prediction precision and efficacy, but it still encounters several challenges. The first challenge lies in the efficient learning of drug and protein feature representations alongside their interaction features to enhance DTI prediction. Another important challenge is to improve the generalization capability of the DTI model within real-world scenarios. To address these challenges, we propose CAT-DTI, a model based on cross-attention and Transformer, possessing domain adaptation capability. CAT-DTI effectively captures the drug-target interactions while adapting to out-of-distribution data. Specifically, we use a convolution neural network combined with a Transformer to encode the distance relationship between amino acids within protein sequences and employ a cross-attention module to capture the drug-target interaction features. Generalization to new DTI prediction scenarios is achieved by leveraging a conditional domain adversarial network, aligning DTI representations under diverse distributions. Experimental results within in-domain and cross-domain scenarios demonstrate that CAT-DTI model overall improves DTI prediction performance compared with previous methods.

摘要

准确高效地预测药物-靶标相互作用(DTI)对于推进药物研发和降低药物发现成本至关重要。最近,深度学习方法的应用提高了 DTI 预测的精度和效果,但仍面临着几个挑战。第一个挑战在于有效地学习药物和蛋白质特征表示及其相互作用特征,以增强 DTI 预测。另一个重要的挑战是提高 DTI 模型在实际场景中的泛化能力。为了解决这些挑战,我们提出了基于交叉注意力和 Transformer 的 CAT-DTI 模型,具有领域自适应能力。CAT-DTI 能够有效地捕捉药物-靶标相互作用,同时适应分布外数据。具体来说,我们使用卷积神经网络结合 Transformer 来编码蛋白质序列中氨基酸之间的距离关系,并使用交叉注意力模块来捕捉药物-靶标相互作用特征。通过利用条件域对抗网络,将不同分布下的 DTI 表示对齐,实现了对新的 DTI 预测场景的泛化。在域内和跨域场景中的实验结果表明,CAT-DTI 模型总体上提高了 DTI 预测性能,优于先前的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验