Suppr超能文献

MITEA:一个用于三维超声心动图中左心室机器学习分割的数据集,使用来自心脏磁共振成像的特定受试者标签。

MITEA: A dataset for machine learning segmentation of the left ventricle in 3D echocardiography using subject-specific labels from cardiac magnetic resonance imaging.

作者信息

Zhao Debbie, Ferdian Edward, Maso Talou Gonzalo D, Quill Gina M, Gilbert Kathleen, Wang Vicky Y, Babarenda Gamage Thiranja P, Pedrosa João, D'hooge Jan, Sutton Timothy M, Lowe Boris S, Legget Malcolm E, Ruygrok Peter N, Doughty Robert N, Camara Oscar, Young Alistair A, Nash Martyn P

机构信息

Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.

Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand.

出版信息

Front Cardiovasc Med. 2023 Jan 10;9:1016703. doi: 10.3389/fcvm.2022.1016703. eCollection 2022.

Abstract

Segmentation of the left ventricle (LV) in echocardiography is an important task for the quantification of volume and mass in heart disease. Continuing advances in echocardiography have extended imaging capabilities into the 3D domain, subsequently overcoming the geometric assumptions associated with conventional 2D acquisitions. Nevertheless, the analysis of 3D echocardiography (3DE) poses several challenges associated with limited spatial resolution, poor contrast-to-noise ratio, complex noise characteristics, and image anisotropy. To develop automated methods for 3DE analysis, a sufficiently large, labeled dataset is typically required. However, ground truth segmentations have historically been difficult to obtain due to the high inter-observer variability associated with manual analysis. We address this lack of expert consensus by registering labels derived from higher-resolution subject-specific cardiac magnetic resonance (CMR) images, producing 536 annotated 3DE images from 143 human subjects (10 of which were excluded). This heterogeneous population consists of healthy controls and patients with cardiac disease, across a range of demographics. To demonstrate the utility of such a dataset, a state-of-the-art, self-configuring deep learning network for semantic segmentation was employed for automated 3DE analysis. Using the proposed dataset for training, the network produced measurement biases of -9 ± 16 ml, -1 ± 10 ml, -2 ± 5 %, and 5 ± 23 g, for end-diastolic volume, end-systolic volume, ejection fraction, and mass, respectively, outperforming an expert human observer in terms of accuracy as well as scan-rescan reproducibility. As part of the Cardiac Atlas Project, we present here a large, publicly available 3DE dataset with ground truth labels that leverage the higher resolution and contrast of CMR, to provide a new benchmark for automated 3DE analysis. Such an approach not only reduces the effect of observer-specific bias present in manual 3DE annotations, but also enables the development of analysis techniques which exhibit better agreement with CMR compared to conventional methods. This represents an important step for enabling more efficient and accurate diagnostic and prognostic information to be obtained from echocardiography.

摘要

超声心动图中左心室(LV)的分割对于心脏病中容积和质量的量化是一项重要任务。超声心动图技术的不断进步已将成像能力扩展到三维领域,从而克服了与传统二维采集相关的几何假设。然而,三维超声心动图(3DE)分析面临着一些挑战,包括空间分辨率有限、对比度噪声比低、噪声特征复杂以及图像各向异性。为了开发用于3DE分析的自动化方法,通常需要一个足够大的、有标记的数据集。然而,由于与手动分析相关的观察者间差异较大,历史上很难获得真实的分割结果。我们通过配准从高分辨率的个体特异性心脏磁共振(CMR)图像中获得的标签来解决专家共识不足的问题,从143名人类受试者(其中10名被排除)中生成了536张带注释的3DE图像。这个异质性群体包括健康对照者和患有心脏病的患者,涵盖了一系列人口统计学特征。为了证明这样一个数据集的实用性,我们采用了一种先进的、自配置的深度学习网络进行语义分割,以实现3DE的自动化分析。使用所提出的数据集进行训练,该网络在舒张末期容积、收缩末期容积、射血分数和质量方面产生的测量偏差分别为-9±16 ml、-1±10 ml、-2±5%和5±23 g,在准确性以及扫描-重扫描可重复性方面均优于专业人类观察者。作为心脏图谱项目的一部分,我们在此展示一个大型的、公开可用的带有真实标签的3DE数据集,该数据集利用了CMR的更高分辨率和对比度,为3DE自动化分析提供了一个新的基准。这种方法不仅减少了手动3DE注释中存在的观察者特异性偏差的影响,还能够开发出与传统方法相比与CMR表现出更好一致性的分析技术。这代表了朝着从超声心动图中获得更高效、准确的诊断和预后信息迈出的重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d841/9871929/ea4591e9c788/fcvm-09-1016703-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验