Suppr超能文献

预处理和疾病特征对 T2 加权 MRI 放射组学特征可重复性的影响。

The impact of pre-processing and disease characteristics on reproducibility of T2-weighted MRI radiomics features.

机构信息

Department of Circulation and Medical Imaging, NTNU-Norwegian University of Science and Technology, 7030, Trondheim, Norway.

Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, 7030, Trondheim, Norway.

出版信息

MAGMA. 2023 Dec;36(6):945-956. doi: 10.1007/s10334-023-01112-z. Epub 2023 Aug 9.

Abstract

PURPOSE

To evaluate the reproducibility of radiomics features derived via different pre-processing settings from paired T2-weighted imaging (T2WI) prostate lesions acquired within a short interval, to select the setting that yields the highest number of reproducible features, and to evaluate the impact of disease characteristics (i.e., clinical variables) on features reproducibility.

MATERIALS AND METHODS

A dataset of 50 patients imaged using T2WI at 2 consecutive examinations was used. The dataset was pre-processed using 48 different settings. A total of 107 radiomics features were extracted from manual delineations of 74 lesions. The inter-scan reproducibility of each feature was measured using the intra-class correlation coefficient (ICC), with ICC values > 0.75 considered good. Statistical differences were assessed using Mann-Whitney U and Kruskal-Wallis tests.

RESULTS

The pre-processing parameters strongly influenced the reproducibility of radiomics features of T2WI prostate lesions. The setting that yielded the highest number of features (25 features) with high reproducibility was the relative discretization with a fixed bin number of 64, no signal intensity normalization, and outlier filtering by excluding outliers. Disease characteristics did not significantly impact the reproducibility of radiomics features.

CONCLUSION

The reproducibility of T2WI radiomics features was significantly influenced by pre-processing parameters, but not by disease characteristics. The selected pre-processing setting yielded 25 reproducible features.

摘要

目的

评估在短时间内采集的配对 T2 加权成像(T2WI)前列腺病变中,通过不同预处理设置得出的放射组学特征的可重复性,选择可产生最多可重复特征的设置,并评估疾病特征(即临床变量)对特征可重复性的影响。

材料与方法

使用连续两次检查的 T2WI 对 50 例患者进行成像,使用 48 种不同设置对数据集进行预处理。从 74 个病变的手动勾画中提取了总共 107 个放射组学特征。使用组内相关系数(ICC)测量每个特征的两次扫描间可重复性,ICC 值>0.75 被认为是良好的。使用 Mann-Whitney U 和 Kruskal-Wallis 检验评估统计差异。

结果

预处理参数强烈影响 T2WI 前列腺病变的放射组学特征的可重复性。具有高可重复性的特征数量最多(25 个特征)的预处理设置是相对离散化,固定分箱数为 64,无需信号强度归一化,通过排除异常值进行异常值过滤。疾病特征并未显著影响放射组学特征的可重复性。

结论

T2WI 放射组学特征的可重复性受预处理参数的显著影响,但不受疾病特征的影响。所选预处理设置产生了 25 个可重复的特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee86/10667400/f488d8ddf2c4/10334_2023_1112_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验