Suppr超能文献

基于扩散加权成像的放射组学nomogram 模型预测肌层浸润性膀胱癌患者无进展生存期

Radiomics nomogram for preoperative prediction of progression-free survival using diffusion-weighted imaging in patients with muscle-invasive bladder cancer.

机构信息

Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

Department of Obstetrics and Gynaecology, International Peace Maternity and Child Health Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Municipal Key Clinical Specialty, Shanghai 200030, China.

出版信息

Eur J Radiol. 2020 Oct;131:109219. doi: 10.1016/j.ejrad.2020.109219. Epub 2020 Aug 26.

Abstract

PURPOSE

To develop a radiomics signature using diffusion-weighted imaging (DWI) for predicting progression-free survival (PFS) in muscle-invasive bladder cancer (MIBC) patients and to assess its incremental value over traditional staging system.

METHOD

210 MIBC patients undergoing preoperative DWI were enrolled. A radiomics signature was built using LASSO model. A radiomics nomogram was generated to assess the incremental value of the radiomics signature over existing risk factors in PFS estimation in terms of calibration, discrimination, reclassification and clinical usefulness. Kaplan-Meier analysis was used to assess the association of the radiomics signature with PFS. C-index was used as a discrimination measure. Net reclassification improvement (NRI) was calculated to evaluate the usefulness improvement added by the radiomics signature. Decision curve analysis was performed to evaluate the clinical usefulness of the nomograms.

RESULTS

The radiomics signature was significantly associated with PFS (log-rank P = 0.0073) and was independent with clinicopathological factors (P = 0.0004). The radiomics nomogram achieved better performance in PFS prediction (C-index: 0.702, 95 % confidence interval [CI]: 0.602, 0.802) than either clinicopathological nomogram (C-index: 0.682, 95 % CI: 0.575, 0.788) or radiomics signature (C-index: 0.612, 95 % CI: 0.493, 0.731), and achieved better calibration and classification (NRI: 0.226, 95 % CI: 0.016, 0.415, P = 0.038). Decision curve analysis demonstrated the better clinical usefulness of the radiomics nomogram.

CONCLUSIONS

The DWI-based radiomics signature was an independent predictor of PFS in MIBC patients. Combining the radiomics signature, clinical staging and other clinicopathological factors achieved better performance in individual PFS prediction.

摘要

目的

利用弥散加权成像(DWI)建立预测肌层浸润性膀胱癌(MIBC)患者无进展生存期(PFS)的影像组学特征,并评估其在传统分期系统基础上的附加价值。

方法

共纳入 210 例接受术前 DWI 的 MIBC 患者。采用 LASSO 模型构建影像组学特征。通过校准、判别、再分类和临床实用性评估,生成一个影像组学列线图,以评估影像组学特征在 PFS 预测中对现有危险因素的附加价值。采用 Kaplan-Meier 分析评估影像组学特征与 PFS 的相关性。C 指数用于判别度量。计算净重新分类改善(NRI)以评估影像组学特征带来的有用性改善。通过决策曲线分析评估列线图的临床实用性。

结果

影像组学特征与 PFS 显著相关(对数秩检验 P=0.0073),与临床病理因素独立相关(P=0.0004)。影像组学列线图在 PFS 预测方面的表现优于临床病理列线图(C 指数:0.702,95%置信区间[CI]:0.602,0.802)和影像组学特征(C 指数:0.612,95%CI:0.493,0.731),且具有更好的校准和分类能力(NRI:0.226,95%CI:0.016,0.415,P=0.038)。决策曲线分析表明,影像组学列线图具有更好的临床实用性。

结论

基于 DWI 的影像组学特征是 MIBC 患者 PFS 的独立预测因子。结合影像组学特征、临床分期和其他临床病理因素,可提高个体 PFS 预测的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验