Mel & Enid Zuckerman College of Public Health, University of Arizona, 1295 N Martin Ave, Tucson, AZ, 85724, USA.
Rocky Mountain Center for Occupational and Environmental Health, University of Utah, 391 Chipeta Way suite c, Salt Lake City, UT, 84108, USA.
Risk Anal. 2022 Jan;42(1):162-176. doi: 10.1111/risa.13768. Epub 2021 Jun 21.
Most early Bluetooth-based exposure notification apps use three binary classifications to recommend quarantine following SARS-CoV-2 exposure: a window of infectiousness in the transmitter, ≥15 minutes duration, and Bluetooth attenuation below a threshold. However, Bluetooth attenuation is not a reliable measure of distance, and infection risk is not a binary function of distance, nor duration, nor timing. We model uncertainty in the shape and orientation of an exhaled virus-containing plume and in inhalation parameters, and measure uncertainty in distance as a function of Bluetooth attenuation. We calculate expected dose by combining this with estimated infectiousness based on timing relative to symptom onset. We calibrate an exponential dose-response curve based on infection probabilities of household contacts. The probability of current or future infectiousness, conditioned on how long postexposure an exposed individual has been symptom-free, decreases during quarantine, with shape determined by incubation periods, proportion of asymptomatic cases, and asymptomatic shedding durations. It can be adjusted for negative test results using Bayes' theorem. We capture a 10-fold range of risk using six infectiousness values, 11-fold range using three Bluetooth attenuation bins, ∼sixfold range from exposure duration given the 30 minute duration cap imposed by the Google/Apple v1.1, and ∼11-fold between the beginning and end of 14 day quarantine. Public health authorities can either set a threshold on initial infection risk to determine 14-day quarantine onset, or on the conditional probability of current and future infectiousness conditions to determine both quarantine and duration.
大多数早期基于蓝牙的暴露通知应用程序使用三种二进制分类来建议在接触 SARS-CoV-2 后进行隔离:传播者的传染性窗口、≥15 分钟的持续时间和低于阈值的蓝牙衰减。然而,蓝牙衰减并不是距离的可靠衡量标准,感染风险也不是距离、持续时间或时间的二进制函数。我们模拟呼出含病毒羽流的形状和方向以及吸入参数的不确定性,并测量蓝牙衰减作为距离不确定性的函数。我们通过将这与基于发病时间的估计传染性相结合来计算预期剂量。我们根据家庭接触者的感染概率对指数剂量反应曲线进行校准。基于接触者接触后无症状的时间,当前或未来传染性的概率会在隔离期间降低,其形状由潜伏期、无症状病例的比例和无症状排毒持续时间决定。可以使用贝叶斯定理根据阴性检测结果进行调整。我们使用六个传染性值捕获了 10 倍的风险范围,使用三个蓝牙衰减箱捕获了 11 倍的风险范围,使用谷歌/苹果 v1.1 施加的 30 分钟持续时间上限给定暴露持续时间的范围约为六倍,在 14 天隔离的开始和结束之间约为 11 倍。公共卫生当局可以根据初始感染风险设定阈值来确定 14 天隔离的开始,或者根据当前和未来传染性的条件概率来确定隔离和持续时间。