文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于第二近红外窗口生物检测的可激活荧光传感器。

Activatable fluorescence sensors for bio-detection in the second near-infrared window.

作者信息

Zhao Mengyao, Li Benhao, Zhang Hongxin, Zhang Fan

机构信息

Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChem, Fudan University Shanghai 200433 P. R. China

出版信息

Chem Sci. 2020 Nov 12;12(10):3448-3459. doi: 10.1039/d0sc04789a.


DOI:10.1039/d0sc04789a
PMID:34163618
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8179418/
Abstract

Fluorescence imaging in the second near-infrared (NIR-II, 1000-1700 nm) window has exhibited advantages of high optical resolution at deeper penetration ( 5-20 mm) in bio-tissues owing to the reduced photon scattering, absorption and tissue autofluorescence. However, the non-responsive and "always on" sensors lack the ability of selective imaging of lesion areas, leading to the low signal-to-background ratio (SBR) and poor sensitivity during bio-detection. In contrast, activatable sensors show signal variation in fluorescence intensity, spectral wavelength and fluorescence lifetime after responding to the micro-environment stimuli, leading to the high detection sensitivity and reliability in bio-sensing. This minireview summarizes the design and detection ability of recently reported NIR-II activatable sensors. Furthermore, the challenges, opportunities and prospects of NIR-II activatable bio-sensing are also discussed.

摘要

由于光子散射、吸收和组织自发荧光减少,在生物组织中,第二近红外窗口(NIR-II,1000-1700nm)的荧光成像在5-20mm的更深穿透深度下具有高光学分辨率的优势。然而,无反应和“始终开启”的传感器缺乏对病变区域进行选择性成像的能力,导致生物检测过程中的信号背景比(SBR)较低且灵敏度较差。相比之下,可激活传感器在响应微环境刺激后,荧光强度、光谱波长和荧光寿命会出现信号变化,从而在生物传感中具有高检测灵敏度和可靠性。本综述总结了最近报道的NIR-II可激活传感器的设计和检测能力。此外,还讨论了NIR-II可激活生物传感面临的挑战、机遇和前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee2b/8179418/579101534c35/d0sc04789a-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee2b/8179418/1620c62bf650/d0sc04789a-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee2b/8179418/9c33e1881d0f/d0sc04789a-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee2b/8179418/c5c2b2b19bed/d0sc04789a-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee2b/8179418/ff167364d262/d0sc04789a-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee2b/8179418/05332858ba3a/d0sc04789a-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee2b/8179418/a245b9b56759/d0sc04789a-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee2b/8179418/579101534c35/d0sc04789a-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee2b/8179418/1620c62bf650/d0sc04789a-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee2b/8179418/9c33e1881d0f/d0sc04789a-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee2b/8179418/c5c2b2b19bed/d0sc04789a-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee2b/8179418/ff167364d262/d0sc04789a-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee2b/8179418/05332858ba3a/d0sc04789a-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee2b/8179418/a245b9b56759/d0sc04789a-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee2b/8179418/579101534c35/d0sc04789a-f7.jpg

相似文献

[1]
Activatable fluorescence sensors for bio-detection in the second near-infrared window.

Chem Sci. 2020-11-12

[2]
Activatable Molecular Probes for Second Near-Infrared Fluorescence, Chemiluminescence, and Photoacoustic Imaging.

Angew Chem Int Ed Engl. 2020-7-13

[3]
Rational Design of NIR-II Ratiometric Fluorescence Probes for Accurate Bioimaging and Biosensing In Vivo.

Small Methods. 2025-1

[4]
Minimizing near-infrared autofluorescence in preclinical imaging with diet and wavelength selection.

J Biomed Opt. 2023-9

[5]
Recent Advances of Optical Imaging in the Second Near-Infrared Window.

Adv Mater. 2018-9-4

[6]
Surgical Navigation for Malignancies Guided by Near-Infrared-II Fluorescence Imaging.

Small Methods. 2021-3

[7]
Molecular Fluorescence and Photoacoustic Imaging in the Second Near-Infrared Optical Window Using Organic Contrast Agents.

Adv Biosyst. 2018-5

[8]
A narrative review of near-infrared fluorescence imaging in hepatectomy for hepatocellular carcinoma.

Ann Transl Med. 2021-1

[9]
Whole-Body Fluorescence Imaging in the Near-Infrared Window.

Adv Exp Med Biol. 2021

[10]
In vivo near infrared fluorescence (NIRF) intravascular molecular imaging of inflammatory plaque, a multimodal approach to imaging of atherosclerosis.

J Vis Exp. 2011-8-4

引用本文的文献

[1]
Nitric oxide-activatable NIR-II organic small molecule for fluorescence imaging-guided synergistic photodynamic and photothermal therapy.

Chem Sci. 2025-7-16

[2]
Zinc(ii) ion detection and fluorescence emission properties of a diaminomaleonitrile-derived unsymmetrical Schiff base ligand.

RSC Adv. 2025-7-10

[3]
A dual-excitation ratiometric NIR-II fluorescent nanoplatform enables high contrast imaging.

Chem Sci. 2025-6-24

[4]
Tunable luminescence of hyperbranched polysiloxanes by nonsaturation-induced electrostatic potential polarization for activatable fluorescent theranostics.

Chem Sci. 2025-5-12

[5]
Oxygen-Sensitive Optical Nanosensors: Current Advances and Future Perspectives.

ACS Sens. 2025-5-23

[6]
Activatable red/near-infrared aqueous organic phosphorescence probes for improved time-resolved bioimaging.

Natl Sci Rev. 2024-10-29

[7]
Wearable Electrochemical Biosensors for Advanced Healthcare Monitoring.

Adv Sci (Weinh). 2025-1

[8]
Molecular Design of NIR-II Polymethine Fluorophores for Bioimaging and Biosensing.

Chem Biomed Imaging. 2023-5-18

[9]
Luminescence Probes in Bio-Applications: From Principle to Practice.

Biosensors (Basel). 2024-7-8

[10]
NIR-II Fluorescent Probes for Fluorescence-Imaging-Guided Tumor Surgery.

Biosensors (Basel). 2024-5-30

本文引用的文献

[1]
New directions of activity-based sensing for NIR imaging.

Chem Sci. 2020-7-3

[2]
Small-molecule fluorescent probes for imaging gaseous signaling molecules: current progress and future implications.

Chem Sci. 2020-4-20

[3]
NIR-II emissive multifunctional AIEgen with single laser-activated synergistic photodynamic/photothermal therapy of cancers and pathogens.

Biomaterials. 2020-11

[4]
Cross-Link-Functionalized Nanoparticles for Rapid Excretion in Nanotheranostic Applications.

Angew Chem Int Ed Engl. 2020-11-9

[5]
Organic NIR-II molecule with long blood half-life for in vivo dynamic vascular imaging.

Nat Commun. 2020-6-18

[6]
Water-Triggered Photoinduced Electron Transfer in Acetonitrile-Water Binary Solvent. Solvent Microstructure-Tuned Reactivity of Hydrophobic Solutes.

J Phys Chem B. 2020-7-9

[7]
A Tumor-Microenvironment-Responsive Lanthanide-Cyanine FRET Sensor for NIR-II Luminescence-Lifetime In Situ Imaging of Hepatocellular Carcinoma.

Adv Mater. 2020-7

[8]
Electrochemical Switching of a Fluorescent Molecular Rotor Embedded within a Bistable Rotaxane.

J Am Chem Soc. 2020-7-8

[9]
Manipulating the fluorescence lifetime at the sub-cellular scale via photo-switchable barcoding.

Nat Commun. 2020-5-18

[10]
Multicolor Luminescent Patterning via Photoregulation of Electron and Energy Transfer Processes in Quantum Dots.

J Phys Chem Lett. 2020-5-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索