Wang Zeming, Detomasi Tyler C, Chang Christopher J
Department of Chemistry, University of California Berkeley CA 94720 USA
Department of Molecular and Cell Biology, University of California Berkeley CA 94720 USA.
Chem Sci. 2020 Dec 15;12(5):1720-1729. doi: 10.1039/d0sc03844j.
Potassium is the most abundant intracellular metal in the body, playing vital roles in regulating intracellular fluid volume, nutrient transport, and cell-to-cell communication through nerve and muscle contraction. On the other hand, aberrant alterations in K homeostasis contribute to a diverse array of diseases spanning cardiovascular and neurological disorders to diabetes to kidney disease to cancer. There is an unmet need for studies of K physiology and pathology owing to the large differences in intracellular extracellular K concentrations ([K] = 150 mM, [K] = 3-5 mM). With a relative dearth of methods to reliably measure dynamic changes in intracellular K in biological specimens that meet the dual challenges of low affinity and high selectivity for K, particularly over Na, currently available fluorescent K sensors are largely optimized with high-affinity receptors that are more amenable for extracellular K detection. We report the design, synthesis, and biological evaluation of Ratiometric Potassium Sensor 1 (), a dual-fluorophore sensor that enables ratiometric fluorescence imaging of intracellular potassium in living systems. links a potassium-responsive fluorescent sensor fragment () with a low-affinity, high-selectivity crown ether receptor for K to a potassium-insensitive reference fluorophore () as an internal calibration standard through ester bonds. Upon intracellular delivery, esterase-directed cleavage splits these two dyes into separate fragments to enable ratiometric detection of K. responds to K in aqueous buffer with high selectivity over competing metal ions and is sensitive to potassium ions at steady-state intracellular levels and can respond to decreases or increases from that basal set point. Moreover, was applied for comparative screening of K pools across a panel of different cancer cell lines, revealing elevations in basal intracellular K in metastatic breast cancer cell lines normal breast cells. This work provides a unique chemical tool for the study of intracellular potassium dynamics and a starting point for the design of other ratiometric fluorescent sensors based on two-fluorophore approaches that do not rely on FRET or related energy transfer designs.
钾是人体中含量最丰富的细胞内金属元素,在调节细胞内液体积、营养物质运输以及通过神经和肌肉收缩进行细胞间通讯等方面发挥着至关重要的作用。另一方面,钾稳态的异常改变会引发一系列疾病,涵盖心血管疾病、神经系统疾病、糖尿病、肾脏疾病乃至癌症。由于细胞内和细胞外钾浓度存在巨大差异([K⁺]i = 150 mM,[K⁺]o = 3 - 5 mM),对钾生理学和病理学的研究存在尚未满足的需求。目前可用的荧光钾传感器大多采用高亲和力受体进行优化,这些受体更适合用于细胞外钾检测,而用于可靠测量生物样本中细胞内钾动态变化的方法相对匮乏,难以应对对钾(尤其是相对于钠)具有低亲和力和高选择性这一双重挑战。我们报告了比率钾传感器1(RPS1)的设计、合成及生物学评估,这是一种双荧光团传感器,能够对活体细胞内的钾进行比率荧光成像。RPS1通过酯键将钾响应荧光传感器片段(KRF)与对钾具有低亲和力、高选择性的冠醚受体连接到一个对钾不敏感的参比荧光团(RFP)上,作为内部校准标准。在细胞内递送后,酯酶介导的裂解将这两种染料分解为单独的片段,从而实现对钾的比率检测。RPS1在水性缓冲液中对钾的响应具有高选择性,优于竞争性金属离子,并且在稳态细胞内水平对钾离子敏感,能够对相对于基础设定点的降低或升高做出响应。此外,RPS1被用于对一组不同癌细胞系中的钾池进行比较筛选,结果显示转移性乳腺癌细胞系中的基础细胞内钾含量高于正常乳腺细胞。这项工作为研究细胞内钾动态提供了一种独特的化学工具,并为基于双荧光团方法、不依赖荧光共振能量转移(FRET)或相关能量转移设计的其他比率荧光传感器的设计奠定了基础。