Suppr超能文献

学习在术前磁共振成像(MR)和术中超声之间匹配二维关键点

Learning to Match 2D Keypoints Across Preoperative MR and Intraoperative Ultrasound.

作者信息

Rasheed Hassan, Dorent Reuben, Fehrentz Maximilian, Morozov Daniil, Kapur Tina, Wells William M, Golby Alexandra, Frisken Sarah, Schnabel Julia A, Haouchine Nazim

机构信息

Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA.

Technical University of Munich, Munich, Germany.

出版信息

Simpl Med Ultrasound (2024). 2025;15186:78-87. doi: 10.1007/978-3-031-73647-6_8. Epub 2024 Oct 5.

Abstract

We propose in this paper a texture-invariant 2D keypoints descriptor specifically designed for matching preoperative Magnetic Resonance (MR) images with intraoperative Ultrasound (US) images. We introduce a strategy, where intraoperative US images are synthesized from MR images accounting for multiple MR modalities and intraoperative US variability. We build our training set by enforcing keypoints localization over all images then train a patient-specific descriptor network that learns texture-invariant discriminant features in a supervised contrastive manner, leading to robust keypoints descriptors. Our experiments on real cases with ground truth show the effectiveness of the proposed approach, outperforming the state-of-the-art methods and achieving 80.35% matching precision on average.

摘要

在本文中,我们提出了一种纹理不变的二维关键点描述符,专门用于将术前磁共振(MR)图像与术中超声(US)图像进行匹配。我们引入了一种策略,即根据多种MR模态和术中US的变异性,从MR图像合成术中US图像。我们通过在所有图像上强制进行关键点定位来构建训练集,然后训练一个患者特定的描述符网络,该网络以监督对比的方式学习纹理不变的判别特征,从而得到鲁棒的关键点描述符。我们在有真实标注的实际病例上进行的实验表明了所提方法的有效性,优于现有方法,平均匹配精度达到80.35%。

相似文献

6
Graph-Based Contrastive Learning for Description and Detection of Local Features.基于图的局部特征描述与检测对比学习
IEEE Trans Neural Netw Learn Syst. 2024 Apr;35(4):4839-4851. doi: 10.1109/TNNLS.2022.3208837. Epub 2024 Apr 4.
9
Volumetric Image Registration From Invariant Keypoints.基于不变关键点的容积图像配准。
IEEE Trans Image Process. 2017 Oct;26(10):4900-4910. doi: 10.1109/TIP.2017.2722689. Epub 2017 Jul 3.
10
Learning 3D medical image keypoint descriptors with the triplet loss.使用三元组损失学习 3D 医学图像关键点描述符。
Int J Comput Assist Radiol Surg. 2022 Jan;17(1):141-146. doi: 10.1007/s11548-021-02481-3. Epub 2021 Aug 27.

本文引用的文献

2
Unified Brain MR-Ultrasound Synthesis using Multi-Modal Hierarchical Representations.使用多模态分层表示的统一脑磁共振-超声合成
Med Image Comput Comput Assist Interv. 2023 Oct 13;2023:448-458. doi: 10.1007/978-3-031-43999-5_43.
5
Joint Detection and Matching of Feature Points in Multimodal Images.多模态图像中特征点的联合检测与匹配。
IEEE Trans Pattern Anal Mach Intell. 2022 Oct;44(10):6585-6593. doi: 10.1109/TPAMI.2021.3092289. Epub 2022 Sep 14.
7
Slice-to-volume medical image registration: A survey.体绘制医学图像配准技术综述。
Med Image Anal. 2017 Jul;39:101-123. doi: 10.1016/j.media.2017.04.010. Epub 2017 Apr 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验