Suppr超能文献

学习在术前磁共振成像(MR)和术中超声之间匹配二维关键点

Learning to Match 2D Keypoints Across Preoperative MR and Intraoperative Ultrasound.

作者信息

Rasheed Hassan, Dorent Reuben, Fehrentz Maximilian, Morozov Daniil, Kapur Tina, Wells William M, Golby Alexandra, Frisken Sarah, Schnabel Julia A, Haouchine Nazim

机构信息

Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA.

Technical University of Munich, Munich, Germany.

出版信息

Simpl Med Ultrasound (2024). 2025;15186:78-87. doi: 10.1007/978-3-031-73647-6_8. Epub 2024 Oct 5.

Abstract

We propose in this paper a texture-invariant 2D keypoints descriptor specifically designed for matching preoperative Magnetic Resonance (MR) images with intraoperative Ultrasound (US) images. We introduce a strategy, where intraoperative US images are synthesized from MR images accounting for multiple MR modalities and intraoperative US variability. We build our training set by enforcing keypoints localization over all images then train a patient-specific descriptor network that learns texture-invariant discriminant features in a supervised contrastive manner, leading to robust keypoints descriptors. Our experiments on real cases with ground truth show the effectiveness of the proposed approach, outperforming the state-of-the-art methods and achieving 80.35% matching precision on average.

摘要

在本文中,我们提出了一种纹理不变的二维关键点描述符,专门用于将术前磁共振(MR)图像与术中超声(US)图像进行匹配。我们引入了一种策略,即根据多种MR模态和术中US的变异性,从MR图像合成术中US图像。我们通过在所有图像上强制进行关键点定位来构建训练集,然后训练一个患者特定的描述符网络,该网络以监督对比的方式学习纹理不变的判别特征,从而得到鲁棒的关键点描述符。我们在有真实标注的实际病例上进行的实验表明了所提方法的有效性,优于现有方法,平均匹配精度达到80.35%。

相似文献

1
Learning to Match 2D Keypoints Across Preoperative MR and Intraoperative Ultrasound.
Simpl Med Ultrasound (2024). 2025;15186:78-87. doi: 10.1007/978-3-031-73647-6_8. Epub 2024 Oct 5.
2
Reducing annotation burden in MR: A novel MR-contrast guided contrastive learning approach for image segmentation.
Med Phys. 2024 Apr;51(4):2707-2720. doi: 10.1002/mp.16820. Epub 2023 Nov 13.
4
Detecting keypoints with semantic labels on skull point cloud for plastic surgery.
Quant Imaging Med Surg. 2025 Apr 1;15(4):3501-3516. doi: 10.21037/qims-24-1358. Epub 2025 Mar 24.
6
Graph-Based Contrastive Learning for Description and Detection of Local Features.
IEEE Trans Neural Netw Learn Syst. 2024 Apr;35(4):4839-4851. doi: 10.1109/TNNLS.2022.3208837. Epub 2024 Apr 4.
8
Object and spatial discrimination makes weakly supervised local feature better.
Neural Netw. 2024 Dec;180:106697. doi: 10.1016/j.neunet.2024.106697. Epub 2024 Sep 12.
9
Volumetric Image Registration From Invariant Keypoints.
IEEE Trans Image Process. 2017 Oct;26(10):4900-4910. doi: 10.1109/TIP.2017.2722689. Epub 2017 Jul 3.
10
Learning 3D medical image keypoint descriptors with the triplet loss.
Int J Comput Assist Radiol Surg. 2022 Jan;17(1):141-146. doi: 10.1007/s11548-021-02481-3. Epub 2021 Aug 27.

本文引用的文献

1
ReMIND: The Brain Resection Multimodal Imaging Database.
Sci Data. 2024 May 14;11(1):494. doi: 10.1038/s41597-024-03295-z.
2
Unified Brain MR-Ultrasound Synthesis using Multi-Modal Hierarchical Representations.
Med Image Comput Comput Assist Interv. 2023 Oct 13;2023:448-458. doi: 10.1007/978-3-031-43999-5_43.
3
Intraoperative ultrasound in brain tumor surgery: A review and implementation guide.
Neurosurg Rev. 2022 Aug;45(4):2503-2515. doi: 10.1007/s10143-022-01778-4. Epub 2022 Mar 30.
4
Pose Estimation and Non-Rigid Registration for Augmented Reality During Neurosurgery.
IEEE Trans Biomed Eng. 2022 Apr;69(4):1310-1317. doi: 10.1109/TBME.2021.3113841. Epub 2022 Mar 18.
5
Joint Detection and Matching of Feature Points in Multimodal Images.
IEEE Trans Pattern Anal Mach Intell. 2022 Oct;44(10):6585-6593. doi: 10.1109/TPAMI.2021.3092289. Epub 2022 Sep 14.
6
Non-rigid registration of 3D ultrasound for neurosurgery using automatic feature detection and matching.
Int J Comput Assist Radiol Surg. 2018 Oct;13(10):1525-1538. doi: 10.1007/s11548-018-1786-7. Epub 2018 Jun 4.
7
Slice-to-volume medical image registration: A survey.
Med Image Anal. 2017 Jul;39:101-123. doi: 10.1016/j.media.2017.04.010. Epub 2017 Apr 28.
8
Handling topological changes during elastic registration : Application to augmented reality in laparoscopic surgery.
Int J Comput Assist Radiol Surg. 2017 Mar;12(3):461-470. doi: 10.1007/s11548-016-1502-4. Epub 2016 Dec 9.
9
Content-based medical image retrieval: a survey of applications to multidimensional and multimodality data.
J Digit Imaging. 2013 Dec;26(6):1025-39. doi: 10.1007/s10278-013-9619-2.
10
MIND: modality independent neighbourhood descriptor for multi-modal deformable registration.
Med Image Anal. 2012 Oct;16(7):1423-35. doi: 10.1016/j.media.2012.05.008. Epub 2012 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验