Yu Fei, Dickson Jalen L, Loka Ravi S, Xu Hengfu, Schaugaard Richard N, Schlegel H Bernhard, Luo Long, Nguyen Hien M
Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States.
Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States.
ACS Catal. 2020 Jun 5;10(11):5990-6001. doi: 10.1021/acscatal.0c01470. Epub 2020 Apr 29.
Copper-catalyzed cross-coupling reactions have become one of the most powerful methods for generating carbon-heteroatom bonds, an important framework of many organic molecules. However, copper-catalyzed C(sp)-O cross-coupling of alkyl halides with alkyl alcohols remains elusive because of the sluggish nature of oxidative addition to copper. To address this challenge, we have developed a catalytic copper system, which overcomes the copper oxidative addition barrier with the aid of visible light and effectively facilitates the cross-couplings of glycosyl bromides with aliphatic alcohols to afford C(sp)-O bonds with high levels of diastereoselectivity. Importantly, this catalytic system leads to a mild and efficient method for stereoselective construction of -1,2- glycosides, which are of paramount importance, but challenging. In general, stereochemical outcomes in -1,2- glycosidic C-O bond-forming processes are unpredictable and dependent on the steric and electronic nature of protecting groups bound to carbohydrate coupling partners. Currently, the most reliable approaches rely on the use of a chiral auxiliary or hydrogen-bond directing group at the C2- and C4-position of carbohydrate electrophiles to control -1,2- selectivity. In our approach, earth-abundant copper not only acts as a photocatalyst and a bond-forming catalyst, but also enforces the stereocontrolled formation of anomeric C-O bonds. This cross-coupling protocol enables highly diastereoselective access to a wide variety of -1,2--glycosides and biologically relevant -glycan oligosaccharides. Our work provides a foundation for developing new methods for the stereoselective construction of natural and unnatural anomeric carbon(sp)-heteroatom bonds.
铜催化的交叉偶联反应已成为生成碳 - 杂原子键最强大的方法之一,而碳 - 杂原子键是许多有机分子的重要框架。然而,由于卤代烷与烷基醇的铜催化C(sp) - O交叉偶联反应中铜的氧化加成反应缓慢,该反应仍然难以实现。为应对这一挑战,我们开发了一种催化铜体系,该体系借助可见光克服了铜的氧化加成障碍,并有效地促进了糖基溴化物与脂肪醇的交叉偶联反应,以高非对映选择性生成C(sp) - O键。重要的是,这种催化体系提供了一种温和且高效的方法来立体选择性构建α - 1,2 - 糖苷,α - 1,2 - 糖苷至关重要但具有挑战性。一般来说,α - 1,2 - 糖苷键形成过程中的立体化学结果不可预测,并且取决于与碳水化合物偶联伙伴相连的保护基的空间和电子性质。目前,最可靠的方法依赖于在碳水化合物亲电试剂的C2 - 和C4 - 位使用手性助剂或氢键导向基团来控制α - 1,2 - 选择性。在我们的方法中,储量丰富的铜不仅作为光催化剂和键形成催化剂,还能强制实现异头碳 - 氧键的立体控制形成。这种交叉偶联方案能够以高度非对映选择性获得多种α - 1,2 - 糖苷和具有生物学相关性的聚糖寡糖。我们的工作为开发立体选择性构建天然和非天然异头碳(sp) - 杂原子键的新方法奠定了基础。