Santa Fe Institute, Santa Fe, New Mexico.
Ann N Y Acad Sci. 2021 Dec;1505(1):79-101. doi: 10.1111/nyas.14619. Epub 2021 Jun 25.
Conceptual abstraction and analogy-making are key abilities underlying humans' abilities to learn, reason, and robustly adapt their knowledge to new domains. Despite a long history of research on constructing artificial intelligence (AI) systems with these abilities, no current AI system is anywhere close to a capability of forming humanlike abstractions or analogies. This paper reviews the advantages and limitations of several approaches toward this goal, including symbolic methods, deep learning, and probabilistic program induction. The paper concludes with several proposals for designing challenge tasks and evaluation measures in order to make quantifiable and generalizable progress in this area.
概念抽象和类比推理是人类学习、推理和将知识灵活应用于新领域的关键能力。尽管在构建具有这些能力的人工智能 (AI) 系统方面已经进行了长期的研究,但目前没有任何 AI 系统能够接近形成类人抽象或类比的能力。本文综述了几种实现这一目标的方法的优缺点,包括符号方法、深度学习和概率程序归纳。本文最后提出了一些设计挑战任务和评估措施的建议,以便在这一领域取得可量化和可推广的进展。