Suppr超能文献

人工智能中的抽象和类比推理。

Abstraction and analogy-making in artificial intelligence.

机构信息

Santa Fe Institute, Santa Fe, New Mexico.

出版信息

Ann N Y Acad Sci. 2021 Dec;1505(1):79-101. doi: 10.1111/nyas.14619. Epub 2021 Jun 25.

Abstract

Conceptual abstraction and analogy-making are key abilities underlying humans' abilities to learn, reason, and robustly adapt their knowledge to new domains. Despite a long history of research on constructing artificial intelligence (AI) systems with these abilities, no current AI system is anywhere close to a capability of forming humanlike abstractions or analogies. This paper reviews the advantages and limitations of several approaches toward this goal, including symbolic methods, deep learning, and probabilistic program induction. The paper concludes with several proposals for designing challenge tasks and evaluation measures in order to make quantifiable and generalizable progress in this area.

摘要

概念抽象和类比推理是人类学习、推理和将知识灵活应用于新领域的关键能力。尽管在构建具有这些能力的人工智能 (AI) 系统方面已经进行了长期的研究,但目前没有任何 AI 系统能够接近形成类人抽象或类比的能力。本文综述了几种实现这一目标的方法的优缺点,包括符号方法、深度学习和概率程序归纳。本文最后提出了一些设计挑战任务和评估措施的建议,以便在这一领域取得可量化和可推广的进展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验