Suppr超能文献

基于深度学习增强的低剂量 18F-氟脱氧葡萄糖正电子发射断层扫描/磁共振成像的初步经验。

Initial Experience With Low-Dose 18F-Fluorodeoxyglucose Positron Emission Tomography/Magnetic Resonance Imaging With Deep Learning Enhancement.

机构信息

From the Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI.

出版信息

J Comput Assist Tomogr. 2021;45(4):637-642. doi: 10.1097/RCT.0000000000001174.

Abstract

OBJECTIVE

To demonstrate the utility of deep learning enhancement (DLE) to achieve diagnostic quality low-dose positron emission tomography (PET)/magnetic resonance (MR) imaging.

METHODS

Twenty subjects with known Crohn disease underwent simultaneous PET/MR imaging after intravenous administration of approximately 185 MBq of 18F-fluorodeoxyglucose (FDG). Five image sets were generated: (1) standard-of-care (reference), (2) low-dose (ie, using 20% of PET counts), (3) DLE-enhanced low-dose using PET data as input, (4) DLE-enhanced low-dose using PET and MR data as input, and (5) DLE-enhanced using no PET data input. Image sets were evaluated by both quantitative metrics and qualitatively by expert readers.

RESULTS

Although low-dose images (series 2) and images with no PET data input (series 5) were nondiagnostic, DLE of the low-dose images (series 3 and 4) achieved diagnostic quality images that scored more favorably than reference (series 1), both qualitatively and quantitatively.

CONCLUSIONS

Deep learning enhancement has the potential to enable a 90% reduction of radiotracer while achieving diagnostic quality images.

摘要

目的

展示深度学习增强(DLE)在实现诊断质量的低剂量正电子发射断层扫描(PET)/磁共振(MR)成像中的效用。

方法

20 名已知患有克罗恩病的患者在静脉注射约 185MBq 的 18F-氟脱氧葡萄糖(FDG)后接受了同时 PET/MR 成像。生成了五组图像:(1)标准护理(参考),(2)低剂量(即,使用 20%的 PET 计数),(3)使用 PET 数据作为输入的 DLE 增强低剂量,(4)使用 PET 和 MR 数据作为输入的 DLE 增强低剂量,以及(5)使用无 PET 数据输入的 DLE 增强。通过定量指标和专家读者的定性评估对图像集进行了评估。

结果

尽管低剂量图像(系列 2)和无 PET 数据输入的图像(系列 5)无法诊断,但低剂量图像的 DLE(系列 3 和 4)实现了诊断质量的图像,无论是在定性还是定量方面,都比参考(系列 1)更有利。

结论

深度学习增强有可能实现放射性示踪剂减少 90%,同时获得诊断质量的图像。

相似文献

5
Investigating Simultaneity for Deep Learning-Enhanced Actual Ultra-Low-Dose Amyloid PET/MR Imaging.
AJNR Am J Neuroradiol. 2022 Mar;43(3):354-360. doi: 10.3174/ajnr.A7410. Epub 2022 Jan 27.
6
PET/MRI with diagnostic MR sequences vs PET/CT in the detection of abdominal and pelvic cancer.
Eur J Radiol. 2016 Apr;85(4):751-9. doi: 10.1016/j.ejrad.2016.01.010. Epub 2016 Jan 21.
8
Clinical evaluation of deep learning-enhanced lymphoma pet imaging with accelerated acquisition.
J Appl Clin Med Phys. 2024 Sep;25(9):e14390. doi: 10.1002/acm2.14390. Epub 2024 May 29.
10
Evaluation of a 2D UNet-Based Attenuation Correction Methodology for PET/MR Brain Studies.
J Digit Imaging. 2022 Jun;35(3):432-445. doi: 10.1007/s10278-021-00551-1. Epub 2022 Jan 28.

引用本文的文献

本文引用的文献

1
FDG-PET/CT in Inflammatory Bowel Disease: Is There a Future?
PET Clin. 2020 Apr;15(2):153-162. doi: 10.1016/j.cpet.2019.11.006.
2
Model-based Iterative Reconstruction: A Promising Algorithm for Today's Computed Tomography Imaging.
J Med Imaging Radiat Sci. 2014 Jun;45(2):131-136. doi: 10.1016/j.jmir.2014.02.002. Epub 2014 Mar 22.
3
Full-Dose PET Image Estimation from Low-Dose PET Image Using Deep Learning: a Pilot Study.
J Digit Imaging. 2019 Oct;32(5):773-778. doi: 10.1007/s10278-018-0150-3.
4
Diagnostic performance of PET/MR in the evaluation of active inflammation in Crohn disease.
Am J Nucl Med Mol Imaging. 2018 Feb 5;8(1):62-69. eCollection 2018.
5
[F]FDG PET/MR enterography for the assessment of inflammatory activity in Crohn's disease: comparison of different MRI and PET parameters.
Eur J Nucl Med Mol Imaging. 2018 Jul;45(8):1382-1393. doi: 10.1007/s00259-018-3962-y. Epub 2018 Feb 17.
6
Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI.
J Magn Reson Imaging. 2018 Aug;48(2):330-340. doi: 10.1002/jmri.25970. Epub 2018 Feb 13.
9
Hybrid imaging in Crohn's disease: from SPECT/CT to PET/MR and new image interpretation criteria.
Q J Nucl Med Mol Imaging. 2018 Mar;62(1):40-55. doi: 10.23736/S1824-4785.17.03053-9. Epub 2017 Nov 30.
10
Imaging of Mucosal Inflammation: Current Technological Developments, Clinical Implications, and Future Perspectives.
Front Immunol. 2017 Oct 11;8:1256. doi: 10.3389/fimmu.2017.01256. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验