From the Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI.
J Comput Assist Tomogr. 2021;45(4):637-642. doi: 10.1097/RCT.0000000000001174.
To demonstrate the utility of deep learning enhancement (DLE) to achieve diagnostic quality low-dose positron emission tomography (PET)/magnetic resonance (MR) imaging.
Twenty subjects with known Crohn disease underwent simultaneous PET/MR imaging after intravenous administration of approximately 185 MBq of 18F-fluorodeoxyglucose (FDG). Five image sets were generated: (1) standard-of-care (reference), (2) low-dose (ie, using 20% of PET counts), (3) DLE-enhanced low-dose using PET data as input, (4) DLE-enhanced low-dose using PET and MR data as input, and (5) DLE-enhanced using no PET data input. Image sets were evaluated by both quantitative metrics and qualitatively by expert readers.
Although low-dose images (series 2) and images with no PET data input (series 5) were nondiagnostic, DLE of the low-dose images (series 3 and 4) achieved diagnostic quality images that scored more favorably than reference (series 1), both qualitatively and quantitatively.
Deep learning enhancement has the potential to enable a 90% reduction of radiotracer while achieving diagnostic quality images.
展示深度学习增强(DLE)在实现诊断质量的低剂量正电子发射断层扫描(PET)/磁共振(MR)成像中的效用。
20 名已知患有克罗恩病的患者在静脉注射约 185MBq 的 18F-氟脱氧葡萄糖(FDG)后接受了同时 PET/MR 成像。生成了五组图像:(1)标准护理(参考),(2)低剂量(即,使用 20%的 PET 计数),(3)使用 PET 数据作为输入的 DLE 增强低剂量,(4)使用 PET 和 MR 数据作为输入的 DLE 增强低剂量,以及(5)使用无 PET 数据输入的 DLE 增强。通过定量指标和专家读者的定性评估对图像集进行了评估。
尽管低剂量图像(系列 2)和无 PET 数据输入的图像(系列 5)无法诊断,但低剂量图像的 DLE(系列 3 和 4)实现了诊断质量的图像,无论是在定性还是定量方面,都比参考(系列 1)更有利。
深度学习增强有可能实现放射性示踪剂减少 90%,同时获得诊断质量的图像。