Suppr超能文献

通过遍历中继实现的快照光声层析成像用于光学吸收的高通量成像

Snapshot Photoacoustic Topography Through an Ergodic Relay for High-throughput Imaging of Optical Absorption.

作者信息

Li Yang, Li Lei, Zhu Liren, Maslov Konstantin, Shi Junhui, Hu Peng, Bo En, Yao Junjie, Liang Jinyang, Wang Lidai, Wang Lihong V

机构信息

Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130-4899, USA.

Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.

出版信息

Nat Photonics. 2020 Mar;14(3):164-170. doi: 10.1038/s41566-019-0576-2. Epub 2020 Jan 20.

Abstract

Current embodiments of photoacoustic imaging require either serial detection with a single-element ultrasonic transducer or parallel detection with an ultrasonic array, necessitating a trade-off between cost and throughput. Here, we present photoacoustic topography through an ergodic relay (PATER) for low-cost high-throughput snapshot widefield imaging. Encoding spatial information with randomized temporal signatures through ergodicity, PATER requires only a single-element ultrasonic transducer to capture a widefield image with a single laser shot. We applied PATER to demonstrate both functional imaging of hemodynamic responses and high-speed imaging of blood pulse wave propagation in mice . Leveraging the high frame rate of 2 kHz, PATER tracked and localized moving melanoma tumor cells in the mouse brain , which enabled flow velocity quantification and super-resolution imaging. Among the potential biomedical applications of PATER, wearable monitoring of human vital signs in particular is envisaged.

摘要

当前的光声成像技术要么使用单元素超声换能器进行串行检测,要么使用超声阵列进行并行检测,这就需要在成本和通量之间进行权衡。在此,我们展示了一种通过遍历中继实现的光声形貌成像(PATER),用于低成本、高通量的快照宽场成像。通过遍历性用随机时间特征对空间信息进行编码,PATER仅需一个单元素超声换能器就能通过单次激光照射捕获宽场图像。我们应用PATER展示了小鼠血液动力学反应的功能成像以及血液脉搏波传播的高速成像。利用2kHz的高帧率,PATER追踪并定位了小鼠大脑中移动的黑色素瘤肿瘤细胞,从而实现了流速定量和超分辨率成像。在PATER的潜在生物医学应用中,特别设想了对人体生命体征的可穿戴监测。

相似文献

1
Snapshot Photoacoustic Topography Through an Ergodic Relay for High-throughput Imaging of Optical Absorption.
Nat Photonics. 2020 Mar;14(3):164-170. doi: 10.1038/s41566-019-0576-2. Epub 2020 Jan 20.
2
Snapshot photoacoustic topography through an ergodic relay of optical absorption in vivo.
Nat Protoc. 2021 May;16(5):2381-2394. doi: 10.1038/s41596-020-00487-w. Epub 2021 Apr 12.
4
Single-shot photoacoustic imaging with single-element transducer through a spatiotemporal encoder.
J Biomed Opt. 2023 Apr;28(4):046004. doi: 10.1117/1.JBO.28.4.046004. Epub 2023 Apr 13.
5
Multifocal photoacoustic microscopy using a single-element ultrasonic transducer through an ergodic relay.
Light Sci Appl. 2020 Jul 31;9:135. doi: 10.1038/s41377-020-00372-x. eCollection 2020.
6
Concurrent photoacoustic and ultrasound microscopy with a coaxial dual-element ultrasonic transducer.
Vis Comput Ind Biomed Art. 2018 Sep 5;1(1):3. doi: 10.1186/s42492-018-0003-4.
9
Four-dimensional photoacoustic imaging of moving targets.
Opt Express. 2008 Dec 22;16(26):21570-81. doi: 10.1364/oe.16.021570.
10
Reflection-mode in vivo photoacoustic microscopy with subwavelength lateral resolution.
Biomed Opt Express. 2014 Nov 11;5(12):4235-41. doi: 10.1364/BOE.5.004235. eCollection 2014 Dec 1.

引用本文的文献

1
Emerging Photoacoustic Imaging Techniques for Peripheral Arterial Disease.
Curr Treat Options Cardiovasc Med. 2025;27(1):56. doi: 10.1007/s11936-025-01113-2. Epub 2025 Aug 28.
2
Recent advancements in molecular photoacoustic tomography.
JPhys Photonics. 2025 Jul 31;7(3):032003. doi: 10.1088/2515-7647/adf167. Epub 2025 Jul 28.
3
A comprehensive review of high-performance photoacoustic microscopy systems.
Photoacoustics. 2025 Jun 4;44:100739. doi: 10.1016/j.pacs.2025.100739. eCollection 2025 Aug.
4
Nanophotonic-enhanced photoacoustic imaging for brain tumor detection.
J Nanobiotechnology. 2025 Mar 5;23(1):170. doi: 10.1186/s12951-025-03204-5.
5
Deep tissue photoacoustic imaging with light and sound.
Npj Imaging. 2024;2(1):44. doi: 10.1038/s44303-024-00048-w. Epub 2024 Nov 6.
6
High speed innovations in photoacoustic microscopy.
Npj Imaging. 2024;2(1):46. doi: 10.1038/s44303-024-00052-0. Epub 2024 Nov 6.
7
Towards photoacoustic human imaging: Shining a new light on clinical diagnostics.
Fundam Res. 2023 Feb 14;4(5):1314-1330. doi: 10.1016/j.fmre.2023.01.008. eCollection 2024 Sep.
8
Sound Out the Deep Clarity: Super-Resolution Photoacoustic Imaging at Depths.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Dec;71(12: Breaking the Resolution Barrier in Ultrasound):1801-1813. doi: 10.1109/TUFFC.2024.3451986. Epub 2025 Jan 8.
9
Challenges and advances in two-dimensional photoacoustic computed tomography: a review.
J Biomed Opt. 2024 Jul;29(7):070901. doi: 10.1117/1.JBO.29.7.070901. Epub 2024 Jul 12.
10
Influence mechanism of the temporal duration of laser irradiation on photoacoustic technique: a review.
J Biomed Opt. 2024 Jan;29(Suppl 1):S11530. doi: 10.1117/1.JBO.29.S1.S11530. Epub 2024 Apr 17.

本文引用的文献

1
A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines .
Sci Robot. 2019 Jul 31;4(32). doi: 10.1126/scirobotics.aax0613. Epub 2019 Jul 24.
2
Localization optoacoustic tomography.
Light Sci Appl. 2018 Apr 20;7:18004. doi: 10.1038/lsa.2018.4. eCollection 2018.
5
Arterial stiffness in end-stage renal disease-pathogenesis, clinical epidemiology, and therapeutic potentials.
Hypertens Res. 2018 May;41(5):309-319. doi: 10.1038/s41440-018-0025-5. Epub 2018 Mar 12.
7
Label-free photoacoustic tomography of whole mouse brain structures .
Neurophotonics. 2016 Jul;3(3):035001. doi: 10.1117/1.NPh.3.3.035001. Epub 2016 Jul 26.
9
2  MHz multi-wavelength pulsed laser for functional photoacoustic microscopy.
Opt Lett. 2017 Apr 1;42(7):1452-1455. doi: 10.1364/OL.42.001452.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验