Tang Yuqi, Liu Wei, Li Yang, Zhou Qifa, Yao Junjie
Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
Department of Ophthalmology, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
Vis Comput Ind Biomed Art. 2018 Sep 5;1(1):3. doi: 10.1186/s42492-018-0003-4.
Simultaneous photoacoustic and ultrasound (PAUS) imaging has attracted increasing attention in biomedical research to probe the optical and mechanical properties of tissue. However, the resolution for majority of the existing PAUS systems is on the order of 1 mm as the majority are designed for clinical use with low-frequency US detection. Here we developed a concurrent PAUS microscopy that consists of optical-resolution photoacoustic microscopy (OR-PAM) and high-frequency US pulse-echo imaging. This dual-modality system utilizes a novel coaxial dual-element ultrasonic transducer (DE-UST) and provides anatomical and functional information with complementary contrast mechanisms, achieving a spatial resolution of 7 μm for PA imaging and 106 μm for US imaging. We performed phantom studies to validate the system's performance. The vasculature of a mouse's hind paw was imaged to demonstrate the potential of this hybrid system for biomedical applications.
同时进行的光声和超声(PAUS)成像在生物医学研究中已引起越来越多的关注,用于探测组织的光学和力学特性。然而,现有的大多数PAUS系统的分辨率约为1毫米,因为大多数系统是为低频超声检测的临床应用而设计的。在此,我们开发了一种同时进行的PAUS显微镜,它由光学分辨率光声显微镜(OR-PAM)和高频超声脉冲回波成像组成。这种双模态系统利用了一种新型同轴双元件超声换能器(DE-UST),并通过互补的对比机制提供解剖学和功能信息,实现了光声成像7μm和超声成像106μm的空间分辨率。我们进行了体模研究以验证该系统的性能。对小鼠后爪的血管系统进行成像,以证明这种混合系统在生物医学应用中的潜力。