Suppr超能文献

机器学习方法在限制致命疾病传播中的作用:一项系统综述。

The roles of machine learning methods in limiting the spread of deadly diseases: A systematic review.

作者信息

Alfred Rayner, Obit Joe Henry

机构信息

Knowledge Technology Research Unit, Faculty of Computing and Informatics, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia.

出版信息

Heliyon. 2021 Jun;7(6):e07371. doi: 10.1016/j.heliyon.2021.e07371. Epub 2021 Jun 23.

Abstract

Machine learning (ML) methods can be leveraged to prevent the spread of deadly infectious disease outbreak (e.g., COVID-19). This can be done by applying machine learning methods in predicting and detecting the deadly infectious disease. Most reviews did not discuss about the machine learning algorithms, datasets and performance measurements used for various applications in predicting and detecting the deadly infectious disease. In contrast, this paper outlines the literature review based on two major ways (e.g., prediction, detection) to limit the spread of deadly disease outbreaks. Hence, this study aims to investigate the state of the art, challenges and future works of leveraging ML methods to detect and predict deadly disease outbreaks according to two categories mentioned earlier. Specifically, this study provides a review on various approaches (e.g., individual and ensemble models), types of datasets, parameters or variables and performance measures used in the previous works. The literature review included all articles from journals and conference proceedings published from 2010 through 2020 in Scopus indexed databases using the search terms and/or . The findings from this review focus on commonly used machine learning approaches, challenges and future works to limit the spread of deadly disease outbreaks through preventions and detections.

摘要

机器学习(ML)方法可用于预防致命传染病的爆发(如新型冠状病毒肺炎)。这可以通过应用机器学习方法来预测和检测致命传染病来实现。大多数综述并未讨论用于预测和检测致命传染病的各种应用中所使用的机器学习算法、数据集和性能度量。相比之下,本文基于两种主要方式(如预测、检测)概述了文献综述,以限制致命疾病爆发的传播。因此,本研究旨在根据上述两类情况,调查利用机器学习方法检测和预测致命疾病爆发的现状、挑战及未来工作。具体而言,本研究对先前工作中使用的各种方法(如个体模型和集成模型)、数据集类型、参数或变量以及性能度量进行了综述。文献综述涵盖了2010年至2020年在Scopus索引数据库中发表的期刊和会议论文集中所有使用搜索词 和/或 的文章。本综述的结果聚焦于常用的机器学习方法、挑战以及通过预防和检测来限制致命疾病爆发传播的未来工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40f9/8242997/d48fb79760be/gr001.jpg

相似文献

1
The roles of machine learning methods in limiting the spread of deadly diseases: A systematic review.
Heliyon. 2021 Jun;7(6):e07371. doi: 10.1016/j.heliyon.2021.e07371. Epub 2021 Jun 23.
3
Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
Artif Intell Med. 2019 Jul;98:109-134. doi: 10.1016/j.artmed.2019.07.007. Epub 2019 Jul 26.
5
Machine learning techniques for detecting electrode misplacement and interchanges when recording ECGs: A systematic review and meta-analysis.
J Electrocardiol. 2020 Sep-Oct;62:116-123. doi: 10.1016/j.jelectrocard.2020.08.013. Epub 2020 Aug 19.
6
A data-driven approach to predicting diabetes and cardiovascular disease with machine learning.
BMC Med Inform Decis Mak. 2019 Nov 6;19(1):211. doi: 10.1186/s12911-019-0918-5.
7
Machine Learning and Cochlear Implantation-A Structured Review of Opportunities and Challenges.
Otol Neurotol. 2020 Jan;41(1):e36-e45. doi: 10.1097/MAO.0000000000002440.
8
Prediction of sepsis patients using machine learning approach: A meta-analysis.
Comput Methods Programs Biomed. 2019 Mar;170:1-9. doi: 10.1016/j.cmpb.2018.12.027. Epub 2018 Dec 26.
9
Machine learning in predicting graft failure following kidney transplantation: A systematic review of published predictive models.
Int J Med Inform. 2019 Oct;130:103957. doi: 10.1016/j.ijmedinf.2019.103957. Epub 2019 Aug 24.

引用本文的文献

2
Progress and challenges for the application of machine learning for neglected tropical diseases.
F1000Res. 2025 May 20;12:287. doi: 10.12688/f1000research.129064.2. eCollection 2023.
3
ECG-based heart arrhythmia classification using feature engineering and a hybrid stacked machine learning.
BMC Cardiovasc Disord. 2025 Apr 7;25(1):260. doi: 10.1186/s12872-025-04678-9.
9
Arabic dialect identification in social media: A hybrid model with transformer models and BiLSTM.
Heliyon. 2024 Aug 13;10(17):e36280. doi: 10.1016/j.heliyon.2024.e36280. eCollection 2024 Sep 15.
10
Climate Change and Infectious Diseases: Navigating the Intersection through Innovation and Interdisciplinary Approaches.
Int J Environ Res Public Health. 2024 Mar 8;21(3):314. doi: 10.3390/ijerph21030314.

本文引用的文献

1
Feature selection based multivariate time series forecasting: An application to antibiotic resistance outbreaks prediction.
Artif Intell Med. 2020 Apr;104:101818. doi: 10.1016/j.artmed.2020.101818. Epub 2020 Feb 19.
2
Forecast of Dengue Cases in 20 Chinese Cities Based on the Deep Learning Method.
Int J Environ Res Public Health. 2020 Jan 10;17(2):453. doi: 10.3390/ijerph17020453.
3
Real-time forecasting of epidemic trajectories using computational dynamic ensembles.
Epidemics. 2019 Dec 21;30:100379. doi: 10.1016/j.epidem.2019.100379.
4
A novel model for malaria prediction based on ensemble algorithms.
PLoS One. 2019 Dec 26;14(12):e0226910. doi: 10.1371/journal.pone.0226910. eCollection 2019.
5
Your evidence? Machine learning algorithms for medical diagnosis and prediction.
Hum Brain Mapp. 2020 Apr 15;41(6):1435-1444. doi: 10.1002/hbm.24886. Epub 2019 Dec 5.
6
Prediction for global African swine fever outbreaks based on a combination of random forest algorithms and meteorological data.
Transbound Emerg Dis. 2020 Mar;67(2):935-946. doi: 10.1111/tbed.13424. Epub 2019 Dec 1.
8
Forecasting influenza activity using self-adaptive AI model and multi-source data in Chongqing, China.
EBioMedicine. 2019 Sep;47:284-292. doi: 10.1016/j.ebiom.2019.08.024. Epub 2019 Aug 30.
9
A machine learning-based approach for predicting the outbreak of cardiovascular diseases in patients on dialysis.
Comput Methods Programs Biomed. 2019 Aug;177:9-15. doi: 10.1016/j.cmpb.2019.05.005. Epub 2019 May 13.
10
Integrating Multiple Data Sources and Learning Models to Predict Infectious Diseases in China.
AMIA Jt Summits Transl Sci Proc. 2019 May 6;2019:680-685. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验