IEEE J Biomed Health Inform. 2022 Feb;26(2):876-887. doi: 10.1109/JBHI.2021.3092835. Epub 2022 Feb 4.
Sepsisis among the leading causes of morbidity and mortality in modern intensive care units. Accurate sepsis prediction is of critical importance to save lives and reduce medical costs. The rapid advancements in sensing and information technology facilitate the effective monitoring of patients' health conditions, generating a wealth of medical data, and provide an unprecedented opportunity for data-driven diagnosis of sepsis. However, real-world medical data are often complexly structured with a high level of uncertainty (e.g., missing values, imbalanced data). Realizing the full data potential depends on developing effective analytical models. In this paper, we propose a novel predictive framework with Multi-Branching Temporal Convolutional Network (MB-TCN) to model the complexly structured medical data for robust prediction of sepsis. The MB-TCN framework not only efficiently handles the missing value and imbalanced data issues but also effectively captures the temporal pattern and heterogeneous variable interactions. We evaluate the performance of the proposed MB-TCN in predicting sepsis using real-world medical data from PhysioNet/Computing in Cardiology Challenge 2019. Experimental results show that MB-TCN outperforms existing methods that are commonly used in current practice.
败血症是现代重症监护病房发病率和死亡率的主要原因之一。准确预测败血症对挽救生命和降低医疗成本至关重要。传感和信息技术的快速发展促进了对患者健康状况的有效监测,产生了大量的医疗数据,为败血症的基于数据驱动的诊断提供了前所未有的机会。然而,真实世界的医疗数据通常具有复杂的结构和高度的不确定性(例如,缺失值、数据不平衡)。要充分挖掘数据的潜力,就需要开发有效的分析模型。在本文中,我们提出了一个新的基于多分支时间卷积网络(MB-TCN)的预测框架,用于对复杂结构的医疗数据进行建模,以实现对败血症的稳健预测。MB-TCN 框架不仅能够有效地处理缺失值和数据不平衡问题,还能够有效地捕捉时间模式和异质变量之间的相互作用。我们使用 PhysioNet/Computing in Cardiology Challenge 2019 中的真实医疗数据来评估所提出的 MB-TCN 在败血症预测中的性能。实验结果表明,MB-TCN 优于当前实践中常用的现有方法。