School of Software, Tsinghua University, Beijing, China.
Emergency Department in Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
Med Biol Eng Comput. 2022 Mar;60(3):875-885. doi: 10.1007/s11517-022-02521-3. Epub 2022 Feb 9.
Sepsis is a life-threatening systemic syndrome characterized by various biological, biochemical, and physiological abnormalities. Due to its high mortality, identifying sepsis patients with high risk of in-hospital death early and accurately will help doctors make optimal clinical decisions and reduce the mortality of sepsis patients. In this paper, we propose a length insensitive TCN-based model to predict sepsis patient's death risk in the future k hours, which is the first work for sepsis death risk early warning model only based on vital signs time series to our best knowledge. Furthermore, we design residual connections between temporal residual blocks to improve the prediction performance and stability especially on short input sequences. We validate and evaluate our model on two freely-available datasets, i.e., MIMIC-IV and eICU, from which 16,520 and 29,620 patients are selected respectively. The experiment results show that our model outperforms LSTM and other machine learning methods, as it has the highest sensitivity and Youden index in almost all cases. Meanwhile, the Youden index of the TCN-based model only slightly decreases by 0.0233 and 0.0307 when the time range of the input sequence changes from 24 to 4 h for k equal to 6 and 12, respectively.
脓毒症是一种危及生命的全身性综合征,其特征是存在各种生物学、生物化学和生理学异常。由于其死亡率高,早期准确识别具有院内死亡高风险的脓毒症患者将有助于医生做出最佳临床决策,降低脓毒症患者的死亡率。在本文中,我们提出了一种基于 TCN 的长度不敏感模型,用于预测未来 k 小时内脓毒症患者的死亡风险,据我们所知,这是第一个仅基于生命体征时间序列的脓毒症死亡风险预警模型。此外,我们在时间残差块之间设计了残差连接,以提高预测性能和稳定性,尤其是在短输入序列上。我们在两个免费的数据集 MIMIC-IV 和 eICU 上验证和评估了我们的模型,分别从这两个数据集中选择了 16520 名和 29620 名患者。实验结果表明,我们的模型优于 LSTM 和其他机器学习方法,因为在几乎所有情况下,它都具有最高的灵敏度和 Youden 指数。同时,当输入序列的时间范围从 24 小时变为 4 小时时,k 等于 6 和 12 的情况下,TCN 模型的 Youden 指数仅分别略有下降 0.0233 和 0.0307。