Suppr超能文献

基于深度学习的欠采样 q 空间成像同时生成 NODDI 和 GFA 参数图。

Simultaneous NODDI and GFA parameter map generation from subsampled q-space imaging using deep learning.

机构信息

Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah.

Department of Bioengineering, University of Utah, Salt Lake City, Utah.

出版信息

Magn Reson Med. 2019 Apr;81(4):2399-2411. doi: 10.1002/mrm.27568. Epub 2018 Nov 13.

Abstract

PURPOSE

To develop a robust multidimensional deep-learning based method to simultaneously generate accurate neurite orientation dispersion and density imaging (NODDI) and generalized fractional anisotropy (GFA) parameter maps from undersampled q-space datasets for use in stroke imaging.

METHODS

Traditional diffusion spectrum imaging (DSI) capable of producing accurate NODDI and GFA parameter maps requires hundreds of q-space samples which renders the scan time clinically untenable. A convolutional neural network (CNN) was trained to generated NODDI and GFA parameter maps simultaneously from 10× undersampled q-space data. A total of 48 DSI scans from 15 stroke patients and 14 normal subjects were acquired for training, validating, and testing this method. The proposed network was compared to previously proposed voxel-wise machine learning based approaches for q-space imaging. Network-generated images were used to predict stroke functional outcome measures.

RESULTS

The proposed network achieves significant performance advantages compared to previously proposed machine learning approaches, showing significant improvements across image quality metrics. Generating these parameter maps using CNNs also comes with the computational benefits of only needing to generate and train a single network instead of multiple networks for each parameter type. Post-stroke outcome prediction metrics do not appreciably change when using images generated from this proposed technique. Over three test participants, the predicted stroke functional outcome scores were within 1-6% of the clinical evaluations.

CONCLUSIONS

Estimates of NODDI and GFA parameters estimated simultaneously with a deep learning network from highly undersampled q-space data were improved compared to other state-of-the-art methods providing a 10-fold reduction scan time compared to conventional methods.

摘要

目的

开发一种稳健的多维深度学习方法,以便从欠采样 q 空间数据集中同时生成准确的神经突方向分散和密度成像 (NODDI) 和广义各向异性分数 (GFA) 参数图,用于中风成像。

方法

传统的扩散谱成像 (DSI) 能够生成准确的 NODDI 和 GFA 参数图,需要数百个 q 空间样本,这使得扫描时间在临床上无法接受。训练卷积神经网络 (CNN) 以同时从 10 倍欠采样的 q 空间数据生成 NODDI 和 GFA 参数图。共采集了 15 例中风患者和 14 例正常受试者的 48 次 DSI 扫描,用于训练、验证和测试该方法。将提出的网络与以前提出的基于体素的机器学习方法进行 q 空间成像进行比较。使用网络生成的图像来预测中风的功能预后测量值。

结果

与以前提出的机器学习方法相比,提出的网络具有显著的性能优势,在图像质量指标方面显示出显著的改进。使用 CNN 生成这些参数图还具有计算上的优势,即只需要生成和训练一个网络,而不是为每个参数类型生成和训练多个网络。使用该技术生成的图像进行中风后预后预测指标并没有明显变化。在三个测试参与者中,预测的中风功能预后评分与临床评估相差 1-6%。

结论

与其他最先进的方法相比,从高度欠采样的 q 空间数据中使用深度学习网络同时估计 NODDI 和 GFA 参数的估计值得到了改善,与传统方法相比,扫描时间减少了 10 倍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验