Suppr超能文献

基于神经网络的高速、无模型扩散张量 MRI 重建。

Highly accelerated, model-free diffusion tensor MRI reconstruction using neural networks.

机构信息

Department of Radiation Oncology, University of Virginia, Charlottesville, VA, 22908, USA.

Department of Radiology, Stanford University, Stanford, CA, 94305, USA.

出版信息

Med Phys. 2019 Apr;46(4):1581-1591. doi: 10.1002/mp.13400. Epub 2019 Feb 14.

Abstract

PURPOSE

The purpose of this study was to develop a neural network that accurately performs diffusion tensor imaging (DTI) reconstruction from highly accelerated scans.

MATERIALS AND METHODS

This retrospective study was conducted using data acquired between 2013 and 2018 and was approved by the local institutional review board. DTI acquired in healthy volunteers (N = 10) was used to train a neural network, DiffNet, to reconstruct fractional anisotropy (FA) and mean diffusivity (MD) maps from small subsets of acquired DTI data with between 3 and 20 diffusion-encoding directions. FA and MD maps were then reconstructed in volunteers and in patients with glioblastoma multiforme (GBM, N = 12) using both DiffNet and conventional reconstructions. Accuracy and precision were quantified in volunteer scans and compared between reconstructions. The accuracy of tumor delineation was compared between reconstructed patient data by evaluating agreement between DTI-derived tumor volumes and volumes defined by contrast-enhanced T1-weighted MRI. Comparisons were performed using areas under the receiver operating characteristic curves (AUC).

RESULTS

DiffNet FA reconstructions were more accurate and precise compared with conventional reconstructions for all acceleration factors. DiffNet permitted reconstruction with only three diffusion-encoding directions with significantly lower bias than the conventional method using six directions (0.01 ± 0.01 vs 0.06 ± 0.01, P < 0.001). While MD-based tumor delineation was not substantially different with DiffNet (AUC range: 0.888-0.902), DiffNet FA had higher AUC than conventional reconstructions for fixed scan time and achieved similar performance with shorter scans (conventional, six directions: AUC = 0.926, DiffNet, three directions: AUC = 0.920).

CONCLUSION

DiffNet improved DTI reconstruction accuracy, precision, and tumor delineation performance in GBM while permitting reconstruction from only three diffusion-encoding directions.&!#6.

摘要

目的

本研究旨在开发一种能够从高度加速扫描中准确进行扩散张量成像(DTI)重建的神经网络。

材料与方法

这是一项回顾性研究,使用了 2013 年至 2018 年期间采集的数据,该研究已获得当地机构审查委员会的批准。本研究使用健康志愿者(N=10)的 DTI 数据来训练神经网络 DiffNet,以便从采集的 DTI 数据中只有 3 到 20 个扩散编码方向的小部分数据中重建部分各向异性分数(FA)和平均扩散系数(MD)图。然后,在志愿者和胶质母细胞瘤多形性(GBM,N=12)患者中使用 DiffNet 和常规重建方法分别对 FA 和 MD 图进行重建。在志愿者扫描中对准确性和精密度进行量化,并比较重建方法之间的差异。通过评估 DTI 衍生的肿瘤体积与对比增强 T1 加权 MRI 定义的肿瘤体积之间的一致性,比较重建后患者数据的肿瘤勾画准确性。使用受试者工作特征曲线(ROC)下的面积(AUC)进行比较。

结果

与常规重建方法相比,DiffNet 在所有加速因子下对 FA 重建的准确性和精密度都更高。DiffNet 仅允许使用三个扩散编码方向进行重建,与使用六个方向的常规方法相比,偏差显著降低(0.01±0.01 与 0.06±0.01,P<0.001)。虽然基于 MD 的肿瘤勾画与 DiffNet 没有明显差异(AUC 范围:0.888-0.902),但对于固定扫描时间,DiffNet FA 的 AUC 高于常规重建方法,并且在较短的扫描时间内也能达到类似的性能(常规,六个方向:AUC=0.926,DiffNet,三个方向:AUC=0.920)。

结论

在 GBM 中,DiffNet 提高了 DTI 重建的准确性、精密度和肿瘤勾画性能,同时仅允许从三个扩散编码方向进行重建。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验