Department of Chemistry, University of Kurdistan, Sanandaj, 66177-15175, Iran.
Research Center for Nanotechnology, University of Kurdistan, Sanandaj, 66177-15175, Iran.
Mikrochim Acta. 2021 Jun 29;188(7):240. doi: 10.1007/s00604-021-04891-1.
The integration of large surface area and high catalytic profiles of Cu-MOF and CuO nanoparticles is described toward electrochemical sensing of nitric oxide (NO) in a microfluidic platform. The CuO/Cu-MOF nanocomposite was prepared through hydrothermal method, and its formation was confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray spectroscopy (EDS). The CuO/Cu-MOF nanostructured modified Au electrodes enabled electrocatalytic NO oxidation at 0.6 V vs. reference electrode, demonstrating linear response over a broad concentration range of 0.03-1 μM and 1-500 μM with a detection limit of 7.8 nM. The interference effect of organic molecules and common ions was negligible, and the sensing system demonstrated excellent stability. Finally, an electrochemical microfluidic NO sensor was developed to detect of NO released from cancer cells, which were stimulated by L-arginine. Furthermore, in the presence of Fe, the stressed cells produced more NO. This work offers considerable potential for its practical applications in clinical diagnostics through determination of chemical symptoms in microliter-volume biological samples. Electrochemical microfluidic NO sensor was developed for detection of NO released from cancer cells. This miniaturized device consumes less materials and provides the basis for greener analytical chemistry.
描述了将大表面积和高催化性能的 Cu-MOF 和 CuO 纳米粒子集成到微流控平台中,用于电化学检测一氧化氮 (NO)。通过水热法制备了 CuO/Cu-MOF 纳米复合材料,并通过扫描电子显微镜 (SEM)、透射电子显微镜 (TEM)、X 射线粉末衍射 (XRD)、X 射线光电子能谱 (XPS) 和能谱 (EDS) 确认了其形成。CuO/Cu-MOF 纳米结构修饰的 Au 电极能够在 0.6 V 对参考电极进行电催化 NO 氧化,在 0.03-1 μM 和 1-500 μM 的宽浓度范围内表现出线性响应,检测限为 7.8 nM。有机分子和常见离子的干扰影响可以忽略不计,传感系统表现出优异的稳定性。最后,开发了电化学微流控 NO 传感器来检测由 L-精氨酸刺激的癌细胞释放的 NO。此外,在 Fe 的存在下,应激细胞产生更多的 NO。这项工作为通过在微升体积的生物样本中测定化学症状,在临床诊断中的实际应用提供了巨大的潜力。开发了电化学微流控 NO 传感器来检测癌细胞释放的 NO。这种小型化设备消耗的材料更少,为绿色分析化学提供了基础。