Suppr超能文献

细胞单元的自组织。

Self-Organization of Cellular Units.

机构信息

Harvard Medical School, Boston, Massachusetts 02115, USA; email:

Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA.

出版信息

Annu Rev Cell Dev Biol. 2021 Oct 6;37:23-41. doi: 10.1146/annurev-cellbio-120319-025356. Epub 2021 Jun 29.

Abstract

The purpose of this review is to explore self-organizing mechanisms that pattern microtubules (MTs) and spatially organize animal cell cytoplasm, inspired by recent experiments in frog egg extract. We start by reviewing conceptual distinctions between self-organizing and templating mechanisms for subcellular organization. We then discuss self-organizing mechanisms that generate radial MT arrays and cell centers in the absence of centrosomes. These include autocatalytic MT nucleation, transport of minus ends, and nucleation from organelles such as melanosomes and Golgi vesicles that are also dynein cargoes. We then discuss mechanisms that partition the cytoplasm in syncytia, in which multiple nuclei share a common cytoplasm, starting with cytokinesis, when all metazoan cells are transiently syncytial. The cytoplasm of frog eggs is partitioned prior to cytokinesis by two self-organizing modules, protein regulator of cytokinesis 1 (PRC1)-kinesin family member 4A (KIF4A) and chromosome passenger complex (CPC)-KIF20A. Similar modules may partition longer-lasting syncytia, such as early embryos. We end by discussing shared mechanisms and principles for the MT-based self-organization of cellular units.

摘要

本文旨在探讨受近期蛙卵提取物实验启发的微管(MT)形态发生和动物细胞质空间组织的自组织机制。我们首先回顾了亚细胞组织中自组织和模板机制之间的概念区别。然后,我们讨论了在没有中心体的情况下生成径向 MT 阵列和细胞中心的自组织机制。这些机制包括 MT 自催化核形成、负端运输以及从黑素体和高尔基体小泡等细胞器进行核形成,这些细胞器也是动力蛋白的货物。然后,我们讨论了在细胞质中进行分区的机制,在细胞质中,多个核共享一个共同的细胞质,首先是胞质分裂,所有后生动物细胞都是短暂的合胞体。在胞质分裂之前,蛙卵的细胞质通过两个自组织模块进行分区,即胞质分裂蛋白调节剂 1(PRC1)-驱动蛋白家族成员 4A(KIF4A)和染色体乘客复合物(CPC)-驱动蛋白 20A(KIF20A)。类似的模块可能会将更长时间的合胞体(如早期胚胎)分隔开。最后,我们讨论了基于 MT 的细胞单位自组织的共享机制和原则。

相似文献

1
Self-Organization of Cellular Units.细胞单元的自组织。
Annu Rev Cell Dev Biol. 2021 Oct 6;37:23-41. doi: 10.1146/annurev-cellbio-120319-025356. Epub 2021 Jun 29.
3
Microtubule nucleation and organization without centrosomes.无中心体的微管成核与组织。
Curr Opin Plant Biol. 2018 Dec;46:1-7. doi: 10.1016/j.pbi.2018.06.004. Epub 2018 Jul 2.
4
Coming into Focus: Mechanisms of Microtubule Minus-End Organization.聚焦:微管负端组织的机制。
Trends Cell Biol. 2018 Jul;28(7):574-588. doi: 10.1016/j.tcb.2018.02.011. Epub 2018 Mar 20.
6
The centrosome-Golgi apparatus nexus.中心体-高尔基体联系
Philos Trans R Soc Lond B Biol Sci. 2014 Sep 5;369(1650). doi: 10.1098/rstb.2013.0462.
8
Golgi as an MTOC: making microtubules for its own good.高尔基体作为一个微管组织中心:为自身利益制造微管。
Histochem Cell Biol. 2013 Sep;140(3):361-7. doi: 10.1007/s00418-013-1119-4. Epub 2013 Jul 3.
9
Microtubule minus-end regulation at a glance.微管负端调控速览。
J Cell Sci. 2019 Jun 7;132(11):jcs227850. doi: 10.1242/jcs.227850.

引用本文的文献

3
Microtubule choreography: spindle self-organization during cell division.微管编排:细胞分裂过程中的纺锤体自我组织
Biophys Rev. 2024 Sep 30;16(5):613-624. doi: 10.1007/s12551-024-01236-z. eCollection 2024 Oct.
7
Patterning of the cell cortex by Rho GTPases.Rho GTPases 对细胞皮层的模式化作用。
Nat Rev Mol Cell Biol. 2024 Apr;25(4):290-308. doi: 10.1038/s41580-023-00682-z. Epub 2024 Jan 3.
9
Design principles of Cdr2 node patterns in fission yeast cells.裂殖酵母细胞中 Cdr2 节点模式的设计原则。
Mol Biol Cell. 2023 Oct 1;34(11):br18. doi: 10.1091/mbc.E23-04-0135. Epub 2023 Aug 23.

本文引用的文献

1
Spatial variation of microtubule depolymerization in large asters.大星状伪足中微管解聚的空间变化。
Mol Biol Cell. 2021 Apr 19;32(9):869-879. doi: 10.1091/mbc.E20-11-0723. Epub 2021 Jan 13.
3
Cytoplasm's Got Moves.细胞质的运动。
Dev Cell. 2021 Jan 25;56(2):213-226. doi: 10.1016/j.devcel.2020.12.002. Epub 2020 Dec 14.
6
8
9
Golgi Outposts Nucleate Microtubules in Cells with Specialized Shapes.高尔基体前哨在具有特殊形状的细胞中形成微管。
Trends Cell Biol. 2020 Oct;30(10):792-804. doi: 10.1016/j.tcb.2020.07.004. Epub 2020 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验