Suppr超能文献

基于优化的 CT 图像重建的患者特异性超参数学习。

Patient-specific hyperparameter learning for optimization-based CT image reconstruction.

机构信息

Department of Radiology, Johns Hopkins University, United States of America.

Department of Radiology and Imaging Sciences, University of Utah, United States of America.

出版信息

Phys Med Biol. 2021 Sep 20;66(19). doi: 10.1088/1361-6560/ac0f9a.

Abstract

We propose a hyperparameter learning framework that learnshyperparameters for optimization-based image reconstruction problems for x-ray CT applications. The framework consists of two functional modules: (1) a hyperparameter learning module parameterized by a convolutional neural network, (2) an image reconstruction module that takes as inputs both the noisy sinogram and the hyperparameters from (1) and generates the reconstructed images. As a proof-of-concept study, in this work we focus on a subclass of optimization-based image reconstruction problems with exactly computable solutions so that the whole network can be trained end-to-end in an efficient manner. Unlike existing hyperparameter learning methods, our proposed framework generates patient-specific hyperparameters from the sinogram of the same patient. Numerical studies demonstrate the effectiveness of our proposed approach compared to bi-level optimization.

摘要

我们提出了一个超参数学习框架,用于学习 X 射线 CT 应用中基于优化的图像重建问题的超参数。该框架由两个功能模块组成:(1)一个由卷积神经网络参数化的超参数学习模块,(2)一个图像重建模块,它将来自(1)的噪声正弦图和超参数作为输入,并生成重建图像。作为概念验证研究,在这项工作中,我们专注于一类具有精确可计算解的基于优化的图像重建问题,以便整个网络可以以有效的方式端到端地进行训练。与现有的超参数学习方法不同,我们提出的框架从同一患者的正弦图中生成患者特异性的超参数。数值研究表明,与双层优化相比,我们提出的方法是有效的。

相似文献

本文引用的文献

1
High Pitch Helical CT Reconstruction.高分辨率螺旋 CT 重建。
IEEE Trans Med Imaging. 2021 Nov;40(11):3077-3088. doi: 10.1109/TMI.2021.3083210. Epub 2021 Oct 27.
3
Convolutional Networks with Dense Connectivity.具有密集连接的卷积网络。
IEEE Trans Pattern Anal Mach Intell. 2022 Dec;44(12):8704-8716. doi: 10.1109/TPAMI.2019.2918284. Epub 2022 Nov 7.
4
ADMM-CSNet: A Deep Learning Approach for Image Compressive Sensing.ADMM-CSNet:一种用于图像压缩感知的深度学习方法。
IEEE Trans Pattern Anal Mach Intell. 2020 Mar;42(3):521-538. doi: 10.1109/TPAMI.2018.2883941. Epub 2018 Nov 28.
6
Learned Primal-Dual Reconstruction.学习原对偶重建。
IEEE Trans Med Imaging. 2018 Jun;37(6):1322-1332. doi: 10.1109/TMI.2018.2799231.
9
A Direct Algorithm for Optimization Problems With the Huber Penalty.带 Huber 罚项的优化问题的直接算法。
IEEE Trans Med Imaging. 2018 Jan;37(1):162-172. doi: 10.1109/TMI.2017.2760104. Epub 2017 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验