Department of Radiology, Johns Hopkins University, United States of America.
Department of Radiology and Imaging Sciences, University of Utah, United States of America.
Phys Med Biol. 2021 Sep 20;66(19). doi: 10.1088/1361-6560/ac0f9a.
We propose a hyperparameter learning framework that learnshyperparameters for optimization-based image reconstruction problems for x-ray CT applications. The framework consists of two functional modules: (1) a hyperparameter learning module parameterized by a convolutional neural network, (2) an image reconstruction module that takes as inputs both the noisy sinogram and the hyperparameters from (1) and generates the reconstructed images. As a proof-of-concept study, in this work we focus on a subclass of optimization-based image reconstruction problems with exactly computable solutions so that the whole network can be trained end-to-end in an efficient manner. Unlike existing hyperparameter learning methods, our proposed framework generates patient-specific hyperparameters from the sinogram of the same patient. Numerical studies demonstrate the effectiveness of our proposed approach compared to bi-level optimization.
我们提出了一个超参数学习框架,用于学习 X 射线 CT 应用中基于优化的图像重建问题的超参数。该框架由两个功能模块组成:(1)一个由卷积神经网络参数化的超参数学习模块,(2)一个图像重建模块,它将来自(1)的噪声正弦图和超参数作为输入,并生成重建图像。作为概念验证研究,在这项工作中,我们专注于一类具有精确可计算解的基于优化的图像重建问题,以便整个网络可以以有效的方式端到端地进行训练。与现有的超参数学习方法不同,我们提出的框架从同一患者的正弦图中生成患者特异性的超参数。数值研究表明,与双层优化相比,我们提出的方法是有效的。