School of Information, U.C. Berkeley, Berkeley, USA.
Goldman School of Public Policy, U.C. Berkeley, Berkeley, USA.
Sci Rep. 2021 Jun 29;11(1):13531. doi: 10.1038/s41598-021-92892-8.
Policymakers everywhere are working to determine the set of restrictions that will effectively contain the spread of COVID-19 without excessively stifling economic activity. We show that publicly available data on human mobility-collected by Google, Facebook, and other providers-can be used to evaluate the effectiveness of non-pharmaceutical interventions (NPIs) and forecast the spread of COVID-19. This approach uses simple and transparent statistical models to estimate the effect of NPIs on mobility, and basic machine learning methods to generate 10-day forecasts of COVID-19 cases. An advantage of the approach is that it involves minimal assumptions about disease dynamics, and requires only publicly-available data. We evaluate this approach using local and regional data from China, France, Italy, South Korea, and the United States, as well as national data from 80 countries around the world. We find that NPIs are associated with significant reductions in human mobility, and that changes in mobility can be used to forecast COVID-19 infections.
各地的政策制定者都在努力确定一系列限制措施,在不过度抑制经济活动的情况下有效地控制 COVID-19 的传播。我们表明,谷歌、脸书和其他供应商收集的关于人类流动性的公开数据可用于评估非药物干预措施的有效性,并预测 COVID-19 的传播。该方法使用简单透明的统计模型来估计 NPIs 对流动性的影响,并使用基本的机器学习方法对 COVID-19 病例进行 10 天预测。该方法的一个优点是,它对疾病动态的假设最少,并且只需要公开可用的数据。我们使用来自中国、法国、意大利、韩国和美国的本地和区域数据以及来自全球 80 个国家的全国数据来评估这种方法。我们发现,NPIs 与人类流动性的显著减少有关,而流动性的变化可用于预测 COVID-19 感染。