Suppr超能文献

利用胸部X光图像预测新冠肺炎住院患者机械通气需求的深度学习模型

Deep learning model to predict the need for mechanical ventilation using chest X-ray images in hospitalised patients with COVID-19.

作者信息

Kulkarni Anoop R, Athavale Ambarish M, Sahni Ashima, Sukhal Shashvat, Saini Abhimanyu, Itteera Mathew, Zhukovsky Sara, Vernik Jane, Abraham Mohan, Joshi Amit, Amarah Amatur, Ruiz Juan, Hart Peter D, Kulkarni Hemant

机构信息

Innotomy Consulting, Bengaluru, India.

Lata Medical Research Foundation, Nagpur, India.

出版信息

BMJ Innov. 2021 Apr;7(2):261-270. doi: 10.1136/bmjinnov-2020-000593. Epub 2021 Mar 2.

Abstract

OBJECTIVES

There exists a wide gap in the availability of mechanical ventilator devices and their acute need in the context of the COVID-19 pandemic. An initial triaging method that accurately identifies the need for mechanical ventilation in hospitalised patients with COVID-19 is needed. We aimed to investigate if a potentially deteriorating clinical course in hospitalised patients with COVID-19 can be detected using all X-ray images taken during hospitalisation.

METHODS

We exploited the well-established DenseNet121 deep learning architecture for this purpose on 663 X-ray images acquired from 528 hospitalised patients with COVID-19. Two Pulmonary and Critical Care experts blindly and independently evaluated the same X-ray images for the purpose of validation.

RESULTS

We found that our deep learning model predicted the need for mechanical ventilation with a high accuracy, sensitivity and specificity (90.06%, 86.34% and 84.38%, respectively). This prediction was done approximately 3 days ahead of the actual intubation event. Our model also outperformed two Pulmonary and Critical Care experts who evaluated the same X-ray images and provided an incremental accuracy of 7.24%-13.25%.

CONCLUSIONS

Our deep learning model accurately predicted the need for mechanical ventilation early during hospitalisation of patients with COVID-19. Until effective preventive or treatment measures become widely available for patients with COVID-19, prognostic stratification as provided by our model is likely to be highly valuable.

摘要

目的

在新型冠状病毒肺炎(COVID-19)大流行的背景下,机械通气设备的可获得性与其迫切需求之间存在巨大差距。需要一种能够准确识别COVID-19住院患者机械通气需求的初始分诊方法。我们旨在研究是否可以使用COVID-19住院患者住院期间拍摄的所有X线图像来检测其潜在的病情恶化过程。

方法

我们为此利用成熟的DenseNet121深度学习架构,对从528例COVID-19住院患者获取的663张X线图像进行分析。两名肺科和重症监护专家对相同的X线图像进行盲法独立评估以进行验证。

结果

我们发现我们的深度学习模型预测机械通气需求的准确率、敏感性和特异性都很高(分别为90.06%、86.34%和84.38%)。该预测比实际插管事件提前约3天做出。我们的模型也优于两名评估相同X线图像的肺科和重症监护专家,其增量准确率为7.24%-13.25%。

结论

我们的深度学习模型在COVID-19患者住院早期准确预测了机械通气需求。在针对COVID-19患者的有效预防或治疗措施广泛可用之前,我们模型提供的预后分层可能具有很高的价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验