利用现有蜂窝无线网络功能检测新冠病毒传播风险区域
Detecting Regions At Risk for Spreading COVID-19 Using Existing Cellular Wireless Network Functionalities.
作者信息
Alsaeedy Alaa A R, Chong Edwin K P
机构信息
Department of Electrical and Computer EngineeringColorado State UniversityFort CollinsCO80523USA.
出版信息
IEEE Open J Eng Med Biol. 2020 Jun 15;1:187-189. doi: 10.1109/OJEMB.2020.3002447. eCollection 2020.
The purpose of this article is to introduce a new strategy to identify areas with high human density and mobility, which are at risk for spreading COVID-19. Crowded regions with actively moving people (called regions) are susceptible to spreading the disease, especially if they contain asymptomatic infected people together with healthy people. Our scheme identifies regions using existing cellular network functionalities- and . The frequency of and events is highly reflective of the density of mobile people in the area because virtually everyone carries UEs. These measurements, which are accumulated over very many UEs, allow us to identify the regions without compromising the privacy and anonymity of individuals. The inferred regions can then be subjected to further monitoring and risk mitigation.
本文的目的是介绍一种新策略,用于识别新冠病毒传播风险较高的高人口密度和高流动性区域。人员密集且活动频繁的区域(称为区域)容易传播该疾病,尤其是当这些区域同时存在无症状感染者和健康人群时。我们的方案利用现有的蜂窝网络功能来识别区域。和事件的频率高度反映了该区域移动人群的密度,因为几乎每个人都携带用户设备。这些在大量用户设备上积累的测量数据,使我们能够识别区域,同时又不损害个人隐私和匿名性。然后,可以对推断出的区域进行进一步监测和风险缓解。
相似文献
IEEE Open J Eng Med Biol. 2020-6-15
2017-11-3
Sensors (Basel). 2017-6-20
ScientificWorldJournal. 2014
PLoS One. 2020-1-24
Data Brief. 2019-11-4
Sensors (Basel). 2019-3-22
ScientificWorldJournal. 2014
引用本文的文献
Biomimetics (Basel). 2023-11-17
Sensors (Basel). 2023-1-30
EURASIP J Adv Signal Process. 2023
Smart Health (Amst). 2022-12
IEEE Open J Eng Med Biol. 2020-8-7
Sensors (Basel). 2021-5-14
Sustain Cities Soc. 2021-9
本文引用的文献
Emerg Infect Dis. 2020-6-21
N Engl J Med. 2020-4-16
JAMA. 2020-4-14