Adans-Dester Catherine P, Bamberg Stacy, Bertacchi Francesco P, Caulfield Brian, Chappie Kara, Demarchi Danilo, Erb M Kelley, Estrada Juan, Fabara Eric E, Freni Michael, Friedl Karl E, Ghaffari Roozbeh, Gill Geoffrey, Greenberg Mark S, Hoyt Reed W, Jovanov Emil, Kanzler Christoph M, Katabi Dina, Kernan Meredith, Kigin Colleen, Lee Sunghoon I, Leonhardt Steffen, Lovell Nigel H, Mantilla Jose, McCoy Thomas H, Luo Nell Meosky, Miller Glenn A, Moore John, O'Keeffe Derek, Palmer Jeffrey, Parisi Federico, Patel Shyamal, Po Jack, Pugliese Benito L, Quatieri Thomas, Rahman Tauhidur, Ramasarma Nathan, Rogers John A, Ruiz-Esparza Guillermo U, Sapienza Stefano, Schiurring Gregory, Schwamm Lee, Shafiee Hadi, Kelly Silacci Sara, Sims Nathaniel M, Talkar Tanya, Tharion William J, Toombs James A, Uschnig Christopher, Vergara-Diaz Gloria P, Wacnik Paul, Wang May D, Welch James, Williamson Lina, Zafonte Ross, Zai Adrian, Zhang Yuan-Ting, Tearney Guillermo J, Ahmad Rushdy, Walt David R, Bonato Paolo
Paolo Bonato is with the Department of Physical Medicine and RehabilitationHarvard Medical School at Spaulding Rehabilitation HospitalBostonMA02129USA.
Wyss InstituteHarvard UniversityCambridgeMA02138USA.
IEEE Open J Eng Med Biol. 2020 Aug 7;1:243-248. doi: 10.1109/OJEMB.2020.3015141. eCollection 2020.
The aim of the study herein reported was to review mobile health (mHealth) technologies and explore their use to monitor and mitigate the effects of the COVID-19 pandemic. A Task Force was assembled by recruiting individuals with expertise in electronic Patient-Reported Outcomes (ePRO), wearable sensors, and digital contact tracing technologies. Its members collected and discussed available information and summarized it in a series of reports. The Task Force identified technologies that could be deployed in response to the COVID-19 pandemic and would likely be suitable for future pandemics. Criteria for their evaluation were agreed upon and applied to these systems. mHealth technologies are viable options to monitor COVID-19 patients and be used to predict symptom escalation for earlier intervention. These technologies could also be utilized to monitor individuals who are presumed non-infected and enable prediction of exposure to SARS-CoV-2, thus facilitating the prioritization of diagnostic testing.
本报告所述研究的目的是回顾移动健康(mHealth)技术,并探索其用于监测和减轻新冠疫情影响的用途。通过招募在电子患者报告结局(ePRO)、可穿戴传感器和数字接触追踪技术方面具有专业知识的人员组建了一个特别工作组。其成员收集并讨论了可用信息,并将其总结在一系列报告中。特别工作组确定了可用于应对新冠疫情且可能适用于未来疫情的技术。商定了对这些系统的评估标准并将其应用于这些系统。移动健康技术是监测新冠患者并用于预测症状升级以便早期干预的可行选择。这些技术还可用于监测假定未感染的个体,并能够预测接触严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的情况,从而有助于确定诊断检测的优先级。
IEEE Open J Eng Med Biol. 2020-8-7
JMIR Form Res. 2022-11-30
JMIR Public Health Surveill. 2021-12-6
JMIR Public Health Surveill. 2021-8-18
J Med Internet Res. 2020-9-15
Front Digit Health. 2023-5-11
Sensors (Basel). 2023-4-21
Health Sci Rep. 2023-2-20
Health Technol (Berl). 2022
IEEE Open J Eng Med Biol. 2020-6-15
IEEE Open J Eng Med Biol. 2020-6-1
IEEE Open J Eng Med Biol. 2020
MMWR Morb Mortal Wkly Rep. 2020-7-24
Lancet Infect Dis. 2020-11
Ann Intern Med. 2020-6-3
Curr Probl Cardiol. 2020-5-8