Amaro Diana, Ferreiro Dardo N, Grothe Benedikt, Pecka Michael
Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany; Department of General Psychology and Education, Ludwig-Maximilians-Universität München, Germany.
Curr Biol. 2021 Sep 13;31(17):3875-3883.e5. doi: 10.1016/j.cub.2021.06.025. Epub 2021 Jun 29.
Information about the position of sensory objects and identifying their concurrent behavioral relevance is vital to navigate the environment. In the auditory system, spatial information is computed in the brain based on the position of the sound source relative to the observer and thus assumed to be egocentric throughout the auditory pathway. This assumption is largely based on studies conducted in either anesthetized or head-fixed and passively listening animals, thus lacking self-motion and selective listening. Yet these factors are fundamental components of natural sensing that may crucially impact the nature of spatial coding and sensory object representation. How individual objects are neuronally represented during unrestricted self-motion and active sensing remains mostly unexplored. Here, we trained gerbils on a behavioral foraging paradigm that required localization and identification of sound sources during free navigation. Chronic tetrode recordings in primary auditory cortex during task performance revealed previously unreported sensory object representations. Strikingly, the egocentric angle preference of the majority of spatially sensitive neurons changed significantly depending on the task-specific identity (outcome association) of the sound source. Spatial tuning also exhibited large temporal complexity. Moreover, we encountered egocentrically untuned neurons whose response magnitude differed between source identities. Using a neural network decoder, we show that, together, these neuronal response ensembles provide spatiotemporally co-existent information about both the egocentric location and the identity of individual sensory objects during self-motion, revealing a novel cortical computation principle for naturalistic sensing.
有关感觉物体的位置信息以及识别它们同时存在的行为相关性对于在环境中导航至关重要。在听觉系统中,空间信息是大脑根据声源相对于观察者的位置计算出来的,因此在整个听觉通路中都被认为是以自我为中心的。这一假设主要基于在麻醉动物或头部固定且被动聆听的动物身上进行的研究,因此缺乏自我运动和选择性聆听。然而,这些因素是自然感知的基本组成部分,可能会对空间编码和感觉物体表征的性质产生关键影响。在无限制的自我运动和主动感知过程中,单个物体如何在神经元层面上被表征,目前大多仍未被探索。在这里,我们训练沙鼠进行一种行为觅食范式,该范式要求在自由导航过程中对声源进行定位和识别。在任务执行过程中,对初级听觉皮层进行慢性四极电极记录,揭示了以前未报告的感觉物体表征。令人惊讶的是,大多数空间敏感神经元的以自我为中心的角度偏好会根据声源的特定任务身份(结果关联)而发生显著变化。空间调谐也表现出很大的时间复杂性。此外,我们还遇到了以自我为中心未调谐的神经元,其反应幅度在不同声源身份之间存在差异。使用神经网络解码器,我们表明,这些神经元反应集合共同提供了关于自我运动过程中单个感觉物体的以自我为中心的位置和身份的时空共存信息,揭示了一种用于自然感知的新皮层计算原理。