Suppr超能文献

在 WSe/WS 摩尔超晶格中模拟 Hubbard 模型物理。

Simulation of Hubbard model physics in WSe/WS moiré superlattices.

机构信息

School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.

Department of Mechanical Engineering, Columbia University, New York, NY, USA.

出版信息

Nature. 2020 Mar;579(7799):353-358. doi: 10.1038/s41586-020-2085-3. Epub 2020 Mar 18.

Abstract

The Hubbard model, formulated by physicist John Hubbard in the 1960s, is a simple theoretical model of interacting quantum particles in a lattice. The model is thought to capture the essential physics of high-temperature superconductors, magnetic insulators and other complex quantum many-body ground states. Although the Hubbard model provides a greatly simplified representation of most real materials, it is nevertheless difficult to solve accurately except in the one-dimensional case. Therefore, the physical realization of the Hubbard model in two or three dimensions, which can act as an analogue quantum simulator (that is, it can mimic the model and simulate its phase diagram and dynamics), has a vital role in solving the strong-correlation puzzle, namely, revealing the physics of a large number of strongly interacting quantum particles. Here we obtain the phase diagram of the two-dimensional triangular-lattice Hubbard model by studying angle-aligned WSe/WS bilayers, which form moiré superlattices because of the difference between the lattice constants of the two materials. We probe the charge and magnetic properties of the system by measuring the dependence of its optical response on an out-of-plane magnetic field and on the gate-tuned carrier density. At half-filling of the first hole moiré superlattice band, we observe a Mott insulating state with antiferromagnetic Curie-Weiss behaviour, as expected for a Hubbard model in the strong-interaction regime. Above half-filling, our experiment suggests a possible quantum phase transition from an antiferromagnetic to a weak ferromagnetic state at filling factors near 0.6. Our results establish a new solid-state platform based on moiré superlattices that can be used to simulate problems in strong-correlation physics that are described by triangular-lattice Hubbard models.

摘要

Hubbard 模型由物理学家 John Hubbard 于 20 世纪 60 年代提出,是晶格中相互作用的量子粒子的简单理论模型。该模型被认为可以捕捉高温超导体、磁性绝缘体和其他复杂量子多体基态的基本物理性质。尽管 Hubbard 模型提供了对大多数实际材料的极大简化表示,但除了一维情况外,它很难准确求解。因此,Hubbard 模型在二维或三维中的物理实现可以作为模拟量子模拟器(即,它可以模拟模型并模拟其相图和动力学),在解决强关联难题方面具有至关重要的作用,即揭示大量强相互作用的量子粒子的物理性质。在这里,我们通过研究角度对准的 WSe/WS 双层材料获得了二维三角晶格 Hubbard 模型的相图,由于两种材料的晶格常数不同,它们形成了莫尔超晶格。我们通过测量系统的光学响应对平面外磁场和栅极调谐载流子密度的依赖性来探测系统的电荷和磁性性质。在第一孔莫尔超晶格能带的半填充时,我们观察到与强相互作用区 Hubbard 模型预期一致的莫特绝缘态,具有反铁磁居里-外斯行为。在半填充以上,我们的实验表明,在填充因子接近 0.6 时,可能从反铁磁态到弱铁磁态发生量子相变。我们的结果建立了一个基于莫尔超晶格的新的固态平台,可用于模拟由三角晶格 Hubbard 模型描述的强关联物理问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验