Suppr超能文献

用于皮肤癌分类的深度学习和迁移学习技术的综合分析。

A comprehensive analysis of deep learning and transfer learning techniques for skin cancer classification.

作者信息

Shakya Manishi, Patel Ravindra, Joshi Sunil

机构信息

Department of Computer Application, UIT RGPV, Bhopal, MP, India.

Department of Computer Science and Engineering, SATI, Vidisha, MP, India.

出版信息

Sci Rep. 2025 Feb 7;15(1):4633. doi: 10.1038/s41598-024-82241-w.

Abstract

Accurately and early diagnosis of melanoma is one of the challenging tasks due to its unique characteristics and different shapes of skin lesions. So, in order to solve this issue, the current study examines various deep learning-based approaches and provide an effective approach for classifying dermoscopic images into two categories of skin lesions. This research focus on skin cancer images and provides solution using deep learning approaches. This research investigates three approaches for classifying skin cancer images. (1) Utilizing three fine-tuned pre-trained networks (VGG19, ResNet18, and MobileNet_V2) as classifiers. (2) Employing three pre-trained networks (ResNet-18, VGG19, and MobileNet v2) as feature extractors in conjunction with four machine learning classifiers (SVM, DT, Naïve Bayes, and KNN). (3) Utilizing a combination of the aforementioned pre-trained networks as feature extractors in conjunction with same machine learning classifiers. All these algorithms are trained using segmented images which are achieved by using the active contour approach. Prior to segmentation, preprocessing step is performed which involves scaling, denoising, and enhancing the image. Experimental performance is measured on the ISIC 2018 dataset which contains 3300 images of skin disease including benign and malignant type cancer images. 80% of the images from the ISIC 2018 dataset are allocated for training, while the remaining 20% are designated for testing. All approaches are trained using different parameters like epoch, batch size, and learning rate. The results indicate that combining ResNet-18 and MobileNet pre-trained networks using concatenation with an SVM classifier achieved the maximum accuracy of 92.87%.

摘要

由于黑色素瘤具有独特的特征和不同形状的皮肤病变,准确早期诊断黑色素瘤是一项具有挑战性的任务。因此,为了解决这个问题,当前的研究考察了各种基于深度学习的方法,并提供了一种将皮肤镜图像分类为两类皮肤病变的有效方法。本研究聚焦于皮肤癌图像,并使用深度学习方法提供解决方案。本研究调查了三种对皮肤癌图像进行分类的方法。(1)利用三个微调的预训练网络(VGG19、ResNet18和MobileNet_V2)作为分类器。(2)将三个预训练网络(ResNet-18、VGG19和MobileNet v2)用作特征提取器,并结合四个机器学习分类器(支持向量机、决策树、朴素贝叶斯和K近邻)。(3)将上述预训练网络组合用作特征提取器,并结合相同的机器学习分类器。所有这些算法都使用通过活动轮廓法获得的分割图像进行训练。在分割之前,执行预处理步骤,包括缩放、去噪和增强图像。实验性能在ISIC 2018数据集上进行测量,该数据集包含3300张皮肤疾病图像,包括良性和恶性癌症图像。ISIC 2018数据集中80%的图像用于训练,其余20%用于测试。所有方法都使用不同的参数(如轮次、批量大小和学习率)进行训练。结果表明,将ResNet-18和MobileNet预训练网络通过串联与支持向量机分类器相结合,实现了92.87%的最高准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b139/11805976/b6587735dc31/41598_2024_82241_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验