文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

结直肠癌细胞及其微环境的代谢重编程:治疗意义。

Metabolic Reprogramming of Colorectal Cancer Cells and the Microenvironment: Implication for Therapy.

机构信息

Section Pathology of the Institute of Forensic Medicine, University Hospital Jena, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany.

出版信息

Int J Mol Sci. 2021 Jun 10;22(12):6262. doi: 10.3390/ijms22126262.


DOI:10.3390/ijms22126262
PMID:34200820
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8230539/
Abstract

Colorectal carcinoma (CRC) is one of the most frequently diagnosed carcinomas and one of the leading causes of cancer-related death worldwide. Metabolic reprogramming, a hallmark of cancer, is closely related to the initiation and progression of carcinomas, including CRC. Accumulating evidence shows that activation of oncogenic pathways and loss of tumor suppressor genes regulate the metabolic reprogramming that is mainly involved in glycolysis, glutaminolysis, one-carbon metabolism and lipid metabolism. The abnormal metabolic program provides tumor cells with abundant energy, nutrients and redox requirements to support their malignant growth and metastasis, which is accompanied by impaired metabolic flexibility in the tumor microenvironment (TME) and dysbiosis of the gut microbiota. The metabolic crosstalk between the tumor cells, the components of the TME and the intestinal microbiota further facilitates CRC cell proliferation, invasion and metastasis and leads to therapy resistance. Hence, to target the dysregulated tumor metabolism, the TME and the gut microbiota, novel preventive and therapeutic applications are required. In this review, the dysregulation of metabolic programs, molecular pathways, the TME and the intestinal microbiota in CRC is addressed. Possible therapeutic strategies, including metabolic inhibition and immune therapy in CRC, as well as modulation of the aberrant intestinal microbiota, are discussed.

摘要

结直肠癌(CRC)是最常见的癌症之一,也是全球癌症相关死亡的主要原因之一。代谢重编程是癌症的一个标志,与包括 CRC 在内的癌症的发生和发展密切相关。越来越多的证据表明,致癌途径的激活和肿瘤抑制基因的失活调节了主要涉及糖酵解、谷氨酰胺分解、一碳代谢和脂质代谢的代谢重编程。异常的代谢程序为肿瘤细胞提供了丰富的能量、营养物质和氧化还原需求,以支持其恶性生长和转移,同时伴随着肿瘤微环境(TME)中代谢灵活性的受损和肠道微生物群落的失调。肿瘤细胞、TME 成分和肠道微生物群落之间的代谢串扰进一步促进了 CRC 细胞的增殖、侵袭和转移,并导致治疗耐药性。因此,需要针对失调的肿瘤代谢、TME 和肠道微生物群落,开发新的预防和治疗应用。在这篇综述中,探讨了 CRC 中代谢程序、分子途径、TME 和肠道微生物群落的失调。讨论了可能的治疗策略,包括 CRC 中的代谢抑制和免疫治疗,以及对异常肠道微生物群落的调节。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7dd/8230539/044a87fad818/ijms-22-06262-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7dd/8230539/9c350d5d87a5/ijms-22-06262-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7dd/8230539/06b8bd6ab749/ijms-22-06262-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7dd/8230539/11afd11221d9/ijms-22-06262-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7dd/8230539/5777a32d65bc/ijms-22-06262-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7dd/8230539/044a87fad818/ijms-22-06262-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7dd/8230539/9c350d5d87a5/ijms-22-06262-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7dd/8230539/06b8bd6ab749/ijms-22-06262-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7dd/8230539/11afd11221d9/ijms-22-06262-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7dd/8230539/5777a32d65bc/ijms-22-06262-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7dd/8230539/044a87fad818/ijms-22-06262-g005.jpg

相似文献

[1]
Metabolic Reprogramming of Colorectal Cancer Cells and the Microenvironment: Implication for Therapy.

Int J Mol Sci. 2021-6-10

[2]
Involvement of tumor immune microenvironment metabolic reprogramming in colorectal cancer progression, immune escape, and response to immunotherapy.

Front Immunol. 2024

[3]
Potential role of the intratumoral microbiota in colorectal cancer immunotherapy.

Int Immunopharmacol. 2024-8-20

[4]
Immune System, Microbiota, and Microbial Metabolites: The Unresolved Triad in Colorectal Cancer Microenvironment.

Front Immunol. 2021

[5]
Exploring the Role of the Gut Microbiota in Modulating Colorectal Cancer Immunity.

Cells. 2024-8-27

[6]
The Therapeutic Potential of Tackling Tumor-Induced Dendritic Cell Dysfunction in Colorectal Cancer.

Front Immunol. 2021

[7]
Crosstalk between gut microbiota and metastasis in colorectal cancer: implication of neutrophil extracellular traps.

Front Immunol. 2023

[8]
Gut bacteria, host immunity, and colorectal cancer: From pathogenesis to therapy.

Eur J Immunol. 2024-10

[9]
The Crosstalk Between Signaling Pathways and Cancer Metabolism in Colorectal Cancer.

Front Pharmacol. 2021-11-23

[10]
ANKRD22, a novel tumor microenvironment-induced mitochondrial protein promotes metabolic reprogramming of colorectal cancer cells.

Theranostics. 2020

引用本文的文献

[1]
A plasma metabolite-based test to detect minimal residual disease in post-surgery patients with colorectal cancer.

iScience. 2025-7-21

[2]
Metabolic reprogramming and immunosenescence in colorectal cancer: mechanisms and therapeutic implications.

Front Cell Dev Biol. 2025-8-13

[3]
PKM2-driven metabolic reprogramming in digestive system tumors: mechanisms, therapeutic advances, and clinical challenges.

Front Immunol. 2025-8-6

[4]
"Molecular pigeon" network of lncRNA and miRNA: decoding metabolic reprogramming in patients with lung cancer.

Front Oncol. 2025-7-17

[5]
ROS/Enzyme Dual-Responsive Drug Delivery System for Targeted Colorectal Cancer Therapy: Synergistic Chemotherapy, Anti-Inflammatory, and Gut Microbiota Modulation.

Pharmaceutics. 2025-7-21

[6]
Lipid metabolic reprogramming in colorectal cancer: mechanisms and therapeutic strategies.

Front Immunol. 2025-7-11

[7]
Metabolic reprogramming in colorectal cancer: a review of aerobic glycolysis and its therapeutic implications for targeted treatment strategies.

Cell Death Discov. 2025-7-14

[8]
Comprehensive analysis of Mendelian randomization and scRNA-seq identify key prognostic genes and relevant functional roles in colorectal cancer.

Sci Rep. 2025-7-11

[9]
Downregulation of UDP-glucose 6-dehydrogenase predicts adverse outcomes in patients with colorectal cancer and promotes tumorigenesis.

Sci Rep. 2025-7-1

[10]
Identification of lipid metabolism-related marker genes in colorectal cancer.

Am J Cancer Res. 2025-5-15

本文引用的文献

[1]
Immune System, Microbiota, and Microbial Metabolites: The Unresolved Triad in Colorectal Cancer Microenvironment.

Front Immunol. 2021

[2]
Tea polyphenol EGCG inhibited colorectal-cancer-cell proliferation and migration via downregulation of STAT3.

Gastroenterol Rep (Oxf). 2020-12-3

[3]
Negative Regulation of ULK1 by microRNA-106a in Autophagy Induced by a Triple Drug Combination in Colorectal Cancer Cells .

Genes (Basel). 2021-2-9

[4]
Lipid Metabolism in Oncology: Why It Matters, How to Research, and How to Treat.

Cancers (Basel). 2021-1-26

[5]
Exogenous and Endogenous Sources of Serine Contribute to Colon Cancer Metabolism, Growth, and Resistance to 5-Fluorouracil.

Cancer Res. 2021-5-1

[6]
Cysteine and Folate Metabolism Are Targetable Vulnerabilities of Metastatic Colorectal Cancer.

Cancers (Basel). 2021-1-23

[7]
The Protective Role of Probiotics against Colorectal Cancer.

Oxid Med Cell Longev. 2020

[8]
Exploring the Emerging Role of the Gut Microbiota and Tumor Microenvironment in Cancer Immunotherapy.

Front Immunol. 2020

[9]
Lipid Metabolism as a Targetable Metabolic Vulnerability in Colorectal Cancer.

Cancers (Basel). 2021-1-15

[10]
Beyond the Mevalonate Pathway: Control of Post-Prenylation Processing by Mutant p53.

Front Oncol. 2020-11-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索