Suppr超能文献

基于超高效液相色谱-高分辨率质谱的血浆代谢组学用于发现前列腺癌早期代谢标志物

Plasma Metabolomics for Discovery of Early Metabolic Markers of Prostate Cancer Based on Ultra-High-Performance Liquid Chromatography-High Resolution Mass Spectrometry.

作者信息

Lin Xiangping, Lécuyer Lucie, Liu Xinyu, Triba Mohamed N, Deschasaux-Tanguy Mélanie, Demidem Aïcha, Liu Zhicheng, Palama Tony, Rossary Adrien, Vasson Marie-Paule, Hercberg Serge, Galan Pilar, Savarin Philippe, Xu Guowang, Touvier Mathilde

机构信息

Sorbonne Paris Nord University, Chemistry Structures Properties of Biomaterials and Therapeutic Agents Laboratory (CSPBAT), Nanomédecine Biomarqueurs Détection Team (NBD), The National Center for Scientific Research (CNRS), UMR 7244, 74 Rue MarcelCachin, CEDEX, 93017 Bobigny, France.

CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

出版信息

Cancers (Basel). 2021 Jun 23;13(13):3140. doi: 10.3390/cancers13133140.

Abstract

BACKGROUND

The prevention and early screening of PCa is highly dependent on the identification of new biomarkers. In this study, we investigated whether plasma metabolic profiles from healthy males provide novel early biomarkers associated with future risk of PCa.

METHODS

Using the (SU.VI.MAX) cohort, we identified plasma samples collected from 146 PCa cases up to 13 years prior to diagnosis and 272 matched controls. Plasma metabolic profiles were characterized using ultra-high-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS).

RESULTS

Orthogonal partial least squares discriminant analysis (OPLS-DA) discriminated PCa cases from controls, with a median area under the receiver operating characteristic curve (AU-ROC) of 0.92 using a 1000-time repeated random sub-sampling validation. Sparse Partial Least Squares Discriminant Analysis (sPLS-DA) identified the top 10 most important metabolites ( < 0.001) discriminating PCa cases from controls. Among them, phosphate, ethyl oleate, eicosadienoic acid were higher in individuals that developed PCa than in the controls during the follow-up. In contrast, 2-hydroxyadenine, sphinganine, L-glutamic acid, serotonin, 7-keto cholesterol, tiglyl carnitine, and sphingosine were lower.

CONCLUSION

Our results support the dysregulation of amino acids and sphingolipid metabolism during the development of PCa. After validation in an independent cohort, these signatures may promote the development of new prevention and screening strategies to identify males at future risk of PCa.

摘要

背景

前列腺癌(PCa)的预防和早期筛查高度依赖于新型生物标志物的识别。在本研究中,我们调查了健康男性的血浆代谢谱是否能提供与PCa未来风险相关的新型早期生物标志物。

方法

利用(SU.VI.MAX)队列,我们鉴定了在诊断前长达13年收集的146例PCa患者的血浆样本以及272例匹配的对照。使用超高效液相色谱-高分辨率质谱(UHPLC-HRMS)对血浆代谢谱进行表征。

结果

采用正交偏最小二乘法判别分析(OPLS-DA)区分PCa患者与对照,在1000次重复随机子采样验证中,受试者操作特征曲线下面积(AU-ROC)中位数为0.92。稀疏偏最小二乘法判别分析(sPLS-DA)确定了区分PCa患者与对照的前10种最重要的代谢物(<0.001)。其中,在随访期间发生PCa的个体中,磷酸盐、油酸乙酯、二十碳二烯酸高于对照。相比之下,2-羟基腺嘌呤、鞘氨醇、L-谷氨酸、血清素、7-酮胆固醇、惕格酰肉碱和鞘氨醇较低。

结论

我们的结果支持PCa发生过程中氨基酸和鞘脂代谢的失调。在独立队列中验证后,这些特征可能促进新的预防和筛查策略的发展,以识别未来有PCa风险的男性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b247/8268247/608d46da17a8/cancers-13-03140-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验