Suppr超能文献

基于深度学习的前列腺癌代谢组学数据研究

Deep learning-based metabolomics data study of prostate cancer.

作者信息

Sun Liqiang, Fan Xiaojing, Zhao Yunwei, Zhang Qi, Jiang Mingyang

机构信息

College of Computer Science and Technology, Inner Mongolia Minzu University, Tongliao, 028000, China.

College of Engineering, Key Laboratory of Intelligent Manufacturing Technology, Inner Mongolia Minzu University, Tongliao, 028000, China.

出版信息

BMC Bioinformatics. 2024 Dec 26;25(1):391. doi: 10.1186/s12859-024-06016-w.

Abstract

As a heterogeneous disease, prostate cancer (PCa) exhibits diverse clinical and biological features, which pose significant challenges for early diagnosis and treatment. Metabolomics offers promising new approaches for early diagnosis, treatment, and prognosis of PCa. However, metabolomics data are characterized by high dimensionality, noise, variability, and small sample sizes, presenting substantial challenges for classification. Despite the wide range of applications of deep learning methods, the use of deep learning in metabolomics research has not been extensively explored. In this study, we propose a hybrid model, TransConvNet, which combines transformer and convolutional neural networks for the classification of prostate cancer metabolomics data. We introduce a 1D convolution layer for the inputs to the dot-product attention mechanism, enabling the interaction of both local and global information. Additionally, a gating mechanism is incorporated to dynamically adjust the attention weights. The features extracted by multi-head attention are further refined through 1D convolution, and a residual network is introduced to alleviate the gradient vanishing problem in the convolutional layers. We conducted comparative experiments with seven other machine learning algorithms. Through five-fold cross-validation, TransConvNet achieved an accuracy of 81.03% and an AUC of 0.89, significantly outperforming the other algorithms. Additionally, we validated TransConvNet's generalization ability through experiments on the lung cancer dataset, with the results demonstrating its robustness and adaptability to different metabolomics datasets. We also proposed the MI-RF (Mutual Information-based random forest) model, which effectively identified key biomarkers associated with prostate cancer by leveraging comprehensive feature weight coefficients. In contrast, traditional methods identified only a limited number of biomarkers. In summary, these results highlight the potential of TransConvNet and MI-RF in both classification tasks and biomarker discovery, providing valuable insights for the clinical application of prostate cancer diagnosis.

摘要

前列腺癌(PCa)作为一种异质性疾病,具有多样的临床和生物学特征,这给早期诊断和治疗带来了重大挑战。代谢组学为PCa的早期诊断、治疗和预后提供了有前景的新方法。然而,代谢组学数据具有高维度、噪声、变异性和小样本量的特点,给分类带来了巨大挑战。尽管深度学习方法有广泛的应用,但深度学习在代谢组学研究中的应用尚未得到广泛探索。在本研究中,我们提出了一种混合模型TransConvNet,它将Transformer和卷积神经网络结合用于前列腺癌代谢组学数据的分类。我们为点积注意力机制的输入引入了一维卷积层,使局部和全局信息能够相互作用。此外,还引入了一种门控机制来动态调整注意力权重。多头注意力提取的特征通过一维卷积进一步细化,并引入残差网络来缓解卷积层中的梯度消失问题。我们与其他七种机器学习算法进行了对比实验。通过五折交叉验证,TransConvNet的准确率达到81.03%,AUC为0.89,显著优于其他算法。此外,我们通过在肺癌数据集上进行实验验证了TransConvNet的泛化能力,结果表明它对不同代谢组学数据集具有鲁棒性和适应性。我们还提出了MI-RF(基于互信息的随机森林)模型,该模型通过利用综合特征权重系数有效地识别了与前列腺癌相关的关键生物标志物。相比之下,传统方法仅识别出有限数量的生物标志物。总之,这些结果突出了TransConvNet和MI-RF在分类任务和生物标志物发现方面的潜力,为前列腺癌诊断的临床应用提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15d1/11674358/e681560a5895/12859_2024_6016_Fig3_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验